LIU Zhao-hui, SONG Chen-yang, CHEN Qiang, ZHANG Zan-jian, BI Qin-cheng. Pseudo Subcooled Boiling Heat Transfer Characteristics of Aviation Kerosene RP-3 under Super- and Near-Critical Pressure Conditions[J]. Journal of Propulsion Technology, 2021, 42(6): 1418-1424.
[1] 章思龙, 秦 江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 2177-2190.
[2] Edwards T. Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[3] 孙 鑫, 杨成虎. 5kN再生冷却发动机推力室传热研究[J]. 火箭推进, 2012, 38(2): 32-37.
[4] Urbano A, Nasuti F. On the Onset of Heat Transfer Deterioration in Supercritical Coolant Flow Channels[C]. New Orleans: 43th AIAA Thermophysics Conference, 2012.
[5] 罗毓珊, 陈听宽, 胡志宏, 等. 高参数小管径内煤油的传热特性研究[J]. 工程热物理学报, 2005, 26(4): 609-612.
[6] 景婷婷, 何国强, 秦 飞, 等. 超临界裂解煤的并联通道流量分配特性研究[J]. 西北工业大学学报, 2019, 37(1): 1-6.
[7] Liu Z H, Zhang Z J, Zhao S J, et al. Heat Transfer of Supercritical Endothermic Fuel in 3-mm Diameter Channels: Comparison between Asymmetric and Uniform Heating[J]. International Journal of Heat and Mass Transfer, 2019, 140(9): 371-378.
[8] Simeoni G G, Bryk T, Gorelli F A, et al. The Widom Line as the Crossover between Liquid-Like and Gas-Like Behaviour in Supercritical Fuids[J]. Nature Physics, 2010, 6(7): 503-507.
[9] Yoon T J, Ha M Y, Lee W B, et al. A Corresponding-State Framework for the Structural Transition of Supercritical Fluids across the Widom Delta[J]. The Journal of Chemical Physics, 2019, 150(15).
[10] Ha M Y, Yoon T J, Tlusty T, et al. Widom Delta of Supercritical Gas-Liquid Coexistence[J]. Journal of Physical Chemistry Letters, 2018, 9(7): 1734-1738.
[11] Banuti D T. Crossing the Widom-Line-Supercritical Pseudo-Boiling[J]. The Journal of Supercritical Fluids, 2015, 98: 12-16.
[12] Maxim F, Contescu C, Boillat P, et al. Visualization of Supercritical Water Pseudo-Boiling at Widom Line Crossover[J]. Nature Communication, 2019, 10(1): 1-11.
[13] Kim K, Hickey J P, Scalo C. Pseudophase Change Effects in Turbulent Channel Flow under Transcritical Temperature Conditions[J]. Journal of Fluid Mechanics, 2019, 871: 52-91.
[14] Zhong F Q, Fan X J, Yu G. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.
[15] Wang N, Zhou J, Pan Y, et al. Experimental Investigation on Flow Patterns of RP-3 Kerosene under Subcritical and Supercritical Pressures[J]. Acta Astronautica, 2014, 94(2): 834-842.
[16] Zhang C B, Xu G Q, Gao L, et al. Experimental Investigation on Heat Transfer of a Specific Fuel (RP-3) Flows through Downward Tubes at Supercritical Pressure[J]. The Journal of Supercritical Fluids, 2012, 72(9): 90-99.
[17] Jiao S, Li S F, Pu H, et al. Experimental Investigation on Thermal Cracking and Convective Heat Transfer Characteristics of Aviation Kerosene RP-3 in a Vertical Tube under Supercritical Pressures[J]. International Journal of Thermal Sciences, 2019, 146(10).
[18] Fu Y C, Huang H R, Wen J, et al. Experimental Investigation on Convective Heat Transfer of Supercritical RP-3 in Vertical Miniature Tubes with Various Diameters[J]. International Journal of Heat and Mass Transfer, 2017, 112: 814-824.
[19] Liu Z H, Bi Q C, Guo Y, et al. Heat Transfer Characteristics during Subcooled Flow Boiling of a Kerosene Kind Hydrocarbon Fuel in a 1mm Diameter Channel[J]. International Journal of Heat and Mass Transfer, 2012, 55: 4987-4995.
[20] Jamialahmadi M, Muller-Steinhagen H, Abdollahi H, et al. Experimental and Theoretical Studies on Subcooled Flow Boiling of Pure liquids and Multicomponent Mixtures[J]. International Journal of Heat and Mass Transfer, 2008, 51(9-10): 2482-2493.
[21] Liu Z H, Bi Q C, Guo Y, et al. Convective Heat Transfer and Pressure Drop Characteristics of Near-Critical-Pressure Hydrocarbon Fuel in a Minichannel[J]. Applied Thermal Engineering, 2013, 51(1-2): 1047-1054.