推进技术 ›› 2006, Vol. 27 ›› Issue (6): 554-558.
侯胜利,李应红,尉询楷,胡金海
摘要: 以提高航空发动机故障诊断的快速性和准确性为目的,基于人工免疫理论中的克隆选择算法,结合聚类分析方法,提出了基于免疫聚类分析的故障特征提取方法。该方法通过删除对分类无关的特征以及压缩类间相关特征,得到最有利于分类的子特征集,提高了分类器的分类性能。并且该算法具有本质上的并行性、计算效率高和聚类能力强等优点。多类支持向量机的分类实验表明,经过基于免疫聚类分析提取的特征对发动机的故障具有更好的识别能力,为发动机的状态监测与故障诊断提供了依据。