[1] 刘中兵, 张兵, 周艳青.固体发动机低温点火适应性模拟试验技术[J]. 固体火箭技术, 2015, 38(2): 203-207.
[2] 侯林法. 复合固体推进剂[M]. 北京:中国宇航出版社, 1994.
[3] Nevière R, Tixier L. Fracture of Case Bonded Grains in Cold Pressurization Motors Tests[R]. AIAA 2009-5171.
[4] Jeremic R. Some Aspects of Time-Temperature Superposition Principle Applied for Predicting Mechanical Properties of Solid Rocket Propellants[J]. Propellants, Explosives, Pyrotechnics, 1999, 24: 221-223.
[5] Blumenthal W R. Compressive Properties of PBXN-110 and Its HTPB-Based Binder as a Function of Temperature and Strain Rate[C]. San Diego: 12th International Detonation Symposium, 2002.
[6] Ho S Y, Fong C W. Temperature Dependence of High Strain-Rate Impact Fracture Behaviour in Highly Filled Polymeric Composite and Plasticized Thermoplastic Propellants[J]. Journal of Material Science, 1987, 22: 3023-3031.
[7] Field J E, Walley S M, Proud W G, et al. Review of Experimental Techniques for High Rate Deformation and Shock Studies[J]. International Journal of Impact Engineering, 2004, 30: 725-775.
[8] 王哲君, 强洪夫, 王广, 等. 含能材料动态力学性能试验方法研究进展[C]. 榆林:固体火箭推进专业委员会第三十一届学术年会, 2014.
[9] CHEN Peng-wan, DAI Kai-da, HUANG Feng-lei, et al. Ultrasonic Evaluation of the Impact Damage of Polymer Bonded Explosives[J]. Journal of Beijing Institute of Technology, 2004, 13(3): 242-246.
[10] 王世英, 胡焕性. B炸药装药发射安全性落锤模拟加载实验研究[J]. 爆炸与冲击, 2003, 23(3): 275-278.
[11] 王哲君, 强洪夫, 王广, 等. 低温高应变率条件下HTPB推进剂拉伸力学性能研究[J]. 推进技术, 2015, 36(9): 1426-1432. (WANG Zhe-jun, QIANG Hong-fu, WANG Guang, et al. Tensile Mechanical Properties of HTPB Propellant at Low Temperature and High Strain Rate[J]. Journal of Propulsion Technology, 2015, 36(9): 1426-1432.)
[12] REN Ping, HOU Xiao, HE Gao-rang, et al. Comparative Research of Tensile and Compressive Modulus of Composite Solid Propellant for Solid Rocket Motor[J]. Journal of Astronautics, 2010, 31(10): 2345-2359.
[13] Ho S Y. High Strain-Rate Constitutive Models for Solid Rocket Propellants[J]. Journal of Propulsion and Power, 2002, 18(5): 1106-1111.
[14] 王蓬勃, 王政时, 鞠玉涛, 等. 双基推进剂高应变率型本构模型的实验研究[J]. 固体火箭技术, 2012, 35(1): 69-72.
[15] 常新龙, 赖建伟, 张晓军, 等. HTPB推进剂高应变率粘弹性本构模型研究[J]. 推进技术, 2014, 35(1): 123-127. (CHANG Xin-long, LAI Jian-wei, ZHANG Xiao-jun, et al. High Strain-Rate Viscoelastic Constitutive Model for HTPB Propellant[J]. Journal of Propulsion Technology, 2014, 35(1): 123-127.)
[16] Park C, Huh H, Park J. Effect of Strain Rate on Mechanical Response of PBX Simulants[C]. Lombard, IL: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, 2013.
[17] 赖建伟, 常新龙, 龙兵, 等. 低温和应变率对HTPB推进剂压缩力学性能影响[J]. 固体火箭技术, 2012, 35(6): 792-798.
[18] 张亚. HTPB复合固体推进剂破坏准则的试验和理论研究[D]. 西安:第二炮兵工程大学, 2010.
[19] Neviere R. An Extension of the Time-Temperature Superposition Principle Applied for Predicting Mechanical Properties of Solid Rocket Propellants[J]. Propellants, Explosives, Pyrotechnics, 1999, 24: 221-223.
[20] 王礼立, 施绍裘, 江瑛, 等. ZWT非线性热粘弹性本构关系的研究与应用[J]. 宁波大学学报, 2000, 13: 141-149.
[21] 刘志林, 王晓鸣, 姚文进, 等. 底排药柱的高应变率动态响应实验和仿真[J]. 含能材料, 2014, 22(4): 529-534.
[22] Zalewski R, Pyrz M, Wolszakiewicz T. Modeling of Solid Propellants Viscoplastic Behavior Using Evolutionary Algorithms[J]. Central European Journal of Energetic Materials, 2010, 7(4): 289-300. * 收稿日期:2015-05-18;修订日期:2015-07-31。基金项目:总装重点预研项目(51328050101)。作者简介:王哲君,男,博士生,研究领域为飞行器结构完整性分析与技术。E-mail: qiulongzaitian@126.com(编辑:张荣莉)
|