[1] Han B, Goldstein R J. Jet-Impingement Heat Transfer in Gas Turbine Systems[M]. New York: New York ACAD Sciences, 2001, 147-161.
[2] Fenot M, Dorignac E, Vullierme J J. An Experimental Study on Hot Round Jets Impinging a Concave Surface[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 945-956.
[3] Yang Weihua, Cao Jun, Shi Rui, et al. Experimental Investigation on Impingement-Effusion Film-Cooling Behaviors Incurve Section[J]. Journal of Astronautics, 2011, 68: 1782-1789.
[4] Mangesh Chaudhari, Bhalchandra Puranik, Amit Agrawa. Heat Transfer Characteristics of Synthetic Jet Impingement Cooling[J]. International Journal of Heat and Mass Transfer, 2010, 53(5-6): 1057-1069.
[5] Mangesh Chaudhari, Bhalchandra Puranik, Amit Agrawal. Effect of Orifice Shape in Synthetic Jet Based Impingement Cooling[J]. Experimental Thermal and Fluid Science, 2010, 34(2): 246-256.
[6] Junsik Lee, Zhong Ren, Phil Ligrani, et al. Cross-Flow Effects on Impingement Array Heat Transfer with Varying Jet-to-Target Plate Distance and Hole Spacing [J]. International Journal of Heat and Mass Transfer, 2014, 75: 534-544.
[7] Chambers A C, Gillespie R H. The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel[J]. ASME Journal of Heat Transfer, 2005, 127(4): 358-365.
[8] Chambers A C, Gillespie R H, Ireland P T, et al. Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes [J]. Journal of Turbomachinery, 2010, 132(2): 1-8.
[9] 张宗卫, 朱惠人, 赵曙, 等. 射流、旋流、出流共同作用下矩形通道换热特性[J]. 航空动力学报, 2011, 26(6): 1321-1327.
[10] Hwang J J, Cheng C S. Impingement Cooling in Triangular Ducts Using an Array of Side-Entry Wall Jets [J]. International Journal of Heat and Mass Transfer, 2001, 44(5): 1053-1063.
[11] Caggese Oriana , Gabriel Gnaegi, Gweneal Hannema, et al. Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet[J]. International Journal of Heat and Mass Transfer, 2013, 65, 873-882.
[12] Li Yang, Jing Ren, Hongde Jiang, et al. Experimental and Numerical Investigation of Unsteady Impingement Cooling within a Blade Leading Edge Passage[J]. International Journal of Heat and Mass Transfer, 2014, 71:57-68.
[13] Stefan Fechte, Alexandros Terzis, Peter Ott, et al. Experimental and Numerical Investigation of Narrow Impingement Cooling Channels[J]. International Journal of Heat and Mass Transfer, 2013, (67): 1208-1219.
[14] 孙纪宁, 邓晶, 邓宏武. 涡轮叶片微小通道气膜新型复合冷却结构设计[J]. 北京航空航天大学学报, 2012, 38(5): 702-706.
[15] 刘高文, 薛彪, 彭力, 等. 叶片前缘旋流和常规冲击对比数值研究[J]. 推进技术, 2011, 32(4): 576-580. (LIU Gao-wen, XUE Biao, PENG Li, et al. Numerical Investigation on Difference Between Blade Leading Edge Vortex and Normal Impingement Cooling [J]. Journal of Propulsion Technology, 2011, 32(4): 576-580.)
[16] 孙润鹏, 朱卫兵, 陈昌将, 等. 阵列射流冲击冷却传热特性的数值研究[J]. 热科学与技术, 2012, 11(1):34-40.
[17] Liu Haiyong, Qiang Hongfu, Liu Songling, et al. Flow Field Investigation in a Trapezoidal Duct with Swirl Flow Induced by Impingement Jets[J]. Chinese Journal of Aeronautics, 2011, 24: 8-17.
[18] 刘海涌, 刘存良, 武文明, 等. 斜射流梯形腔内靶面的冲击冷却换热特性实验研究[J]. 推进技术, 2014, 35(3): 384-391. (LIU Hai-yong, LIU Cun-liang, WU Wen-ming, et al. Experimental Investigation on Heat Transfer Characteristics on Target Wall in a Trapezoid Duct with Incline Impingement Jets[J]. Journal of Propulsion Technology, 2014, 35(3): 384-391.)(编辑:史亚红) * 收稿日期:2015-01-22;修订日期:2015-04-30。基金项目:国家自然科学基金(51206180); 陕西省自然科学基金(2014JQ7276)。作者简介:刘海涌,男,博士,研究领域为飞行器及发动机高温部件热防护技术。E-mail: helian_xicheng@163.com
|