[1] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京:高等教育出版社, 1989.
[2] Ben-Dor Gabi. Shock Wave Reflection Phenomena[M]. Berlin: Springer-Verlag Press, 2007.
[3] 杨旸, 姜宗林, 胡宗民. 激波反射现象的研究进展 [J]. 力学进展, 2012, 42 (2): 141-161.
[4] Mach E. Uber den Verlauf von Funkenwellen in der Ebene und im Raume[J]. Sitzungsbr Akad Wiss Wien, 1878, 78: 819-838.
[5] von Neumann J. Oblique Reflection of Shocks[C]. Washington DC: Explosive Research Report 12, Navy Department, Bureau of Ordnance, 1943.
[6] von Neumann J. Refraction, Intersection and Reflection of Shock Waves[C]. Washington DC: NAVORD Report 203-45, Navy Dept., Bureau of Ordinance, 1943.
[7] Henderson L F, Lozzi A. Experiments on Transition of Mach Reflection[J]. Journal of Fluid Mechanics, 1975, 68(1): 139-145.
[8] M?lder S. Particular Conditions for the Termination of Regular Reflection of Shock Waves[J]. CASI Trans., 1979, 25(1): 44-49.
[9] Hornung H G, Oertel H, Sandeman R J. Transition to Mach Reflexion of Shock Waves in Steady and Pseudosteady Flow with and without Relaxation[J]. Journal of Fluid Mechanics, 1979, 90 (3): 541-560.
[10] Auld D J, Bird G A. The Transition from Regular to Mach Reflection [R]. AIAA 76-322.
[11] Auld D J, Bird G A. Monte Carlo Simulation of Regular and Mach Reflection[J]. AIAA Journal, 1977, 15(5): 638-641.
[12] Hornung H G, Kychakoff G. Transition from Regular to Mach Reflexion of Shock Waves in Relaxing Gases[R]. Washington DC: University of Washington Press, 1977.
[13] Henderson L F, Lozzi A. Further Experiments on Transition to Mach Reflexion[J]. Journal of Fluid Mechanics, 1979, 94(3): 541-559.
[14] Hornung H G, Robinson M L. Transition from Regular to Mach Reflection of Shock Waves, Part 2: The Steady-flow Criterion[J]. Journal of Fluid Mechanics, 1982, 123: 155-164.
[15] Teshukov V M. On Stability of Regular Reflection of Shock Waves[J]. Prilk.Mekhanika i Techn.Fizika, 1989, 2(1): 26-33.
[16] Hornung H G. Technical Note on the Stability of Steady-Flow Regular and Mach Reflection[J]. Shock Waves, 1997, 7(2): 123-125.
[17] Li H, Ben-Dor G. Application of the Principle of Minimum Entropy Production to Shock Wave Reflections.I.Steady Flows[J]. Journal of Appllied Physics, 1996, 80 (4): 2027-2037.
[18] Chpoun A, Passerel D, Li H, et al. Reconsideration of Oblique Shock Wave Reflections in Steady Flows.Part 1.Experimental Investigation [J]. Journal of Fluid Mechanics, 1995, 301: 19-35.
[19] Ivanov M S, Kudryavtsev A N, Nikiforov S B, et al. Experiments on Shock Wave Reflection Transition and Hysteresis in Low-Noise Wind Tunnel[J]. Physics of Fluids, 2003, 15(6): 1807-1810.
[20] Sudani N, Sato M, Karasawa T, et al. Irregular Effects on the Transition from Regular to Mach Reflection of Shock Waves in Wind Tunnel Flows[J]. Journal of Fluid Mechanics, 2002, 459: 167-185.
[21] Ivanov M S, Gimelshein S F, Beylich A E. Hysteresis Effect in Stationary Reflection of Shock-Waves[J]. Physics of Fluids, 1995, 7(4): 685-687.
[22] Chpoun A, Ben-Dor G. Numerical Confirmation of the Hysteresis Phenomenon in the Regular to the Mach Reflection Transition in Steady Flows[J].Shock Waves, 1995, 5(4): 199-203.
[23] Vuillon J, Zeitoun D, Ben-Dor G. Reconsideration of Oblique Shock Wave Reflections in Steady Flows.Part 2.Numerical Investigation[J]. Journal of Fluid Mechanics, 1995, 301: 37-50.
[24] Ivanov M, Zeitoun D, Vuillon J, et al. Investigation of the Hysteresis Phenomena in Steady Shock Reflection Using Sinetic and Continuum Methods[J].Shock Waves, 1996, 5(6): 341-346.
[25] Ivanov M S, Vandromme D, Fomin V M, et al. Transition Between Regular and Mach Reflection of Shock Waves: New Numerical and Experimental Results[J]. Shock Waves, 2001, 11(3): 199-207.
[26] Ivanov M S, Kudryavtsev A N, Nikiforov S B, et al. Study of Transition Between Regular and Mach Reflections in Various Wind Tunnels[R]. AIAA 2003-156.
[27] Onofri M, Nasuti F. Theoretical Considerations on Shock Reflections and Their Implications on the Evaluations of Air Intake Performance[C]. Southampton: Proceeding of 22nd International Symposium Shock, 1999.
[28] Ivanov M S, Ben-Dor G, Elperin T, et al. Flow-Mach-Number-Variation-Induced Hysteresis in Steady Shock Wave Reflections[J]. AIAA Journal, 2001, 39(5): 972-974.
[29] Cui T, Jiao X, Yu D. Geometry of the Transition Criterion of Shock Wave Reflection over a Wedge[J]. Shock Waves, 2015, 25(1): 23-34.
[30] Tretyakov P, Garanin A, Kraynev V, et al. Investigation of Local Laser Energy Release Influence on Supersonic Flow by Methods of Aerophysical Experiments [C]. International Conference on Methods of Aerophysical Research, Novosibirsk, 1996.
[31] 黄辉, 金星, 李倩. 激光引致激波传播规律的数值研究 [J]. 推进技术, 2010, 31(2): 243-246. (HUANG Hui, JIN Xing, LI Qian. Numerical Study on the Propagation Properties of Laser-Induced Shock Wave[J]. Journal of Propulsion Technology, 2010, 31(2):243-246.)
[32] Yan H, Adelgren R, Elliott G, et al. Laser Energy Deposition in Quiescent Air and Intersecting Shocks[C]. Moscow: Fourth Workshop on Magneto-Plasma Aerodynamics for Aerospace Applications, 2002.
[33] Yan H, Adelgren R, Elliott G, et al. Laser Energy Deposition in Intersecting Shocks [R]. AIAA 2002-2729.
[34] Yan H, Adelgren R, Elliott G, et al. Effect of Energy Addition on MR → RR Transition[J]. Shock Waves, 2003, 13(2): 113-121.
[35] Khotyanovsky D V, Kudryavtsev A N, Ivanov M S. Effects of a Single-Pulse Energy Deposition on Steady Shock Wave Reflection[J]. Shock Waves, 2006, 15(5): 353-362.
[36] Khotyanovsky D V, Knight D D, Kudryavtsev A N, et al. Numerical Study on Laser-Induced Shock Wave Reflection Transition [C]. Kaohsiung: The 5th International Workshop on Shock/Vortex Interaction, 2003.
[37] Ben-Dor G, Elperin T, Li H. Downstream Pressure Induced Hysteresis in the Regular -Mach Reflection Transition in Steady Flows[J]. Physics of Fluids, 1997, 9(10): 3096-9098.
[38] Ben-Dor G, Elperin T, Li H, et al. The Influence of the Downstream Pressure on the Shock Wave Reflection Phenomenon in Steady Flows[J]. Journal of Fluid Mechanics, 1999, 386: 213-232.
[39] Shimshi E, Ben-Dor G, Levy A. Viscous Simulation of Shock-Reflection Hysteresis in Overexpanded Planar Nozzles[J]. Journal of Fluid Mechanics, 2009, 635: 189-206.
[40] Shimshi E, Ben-Dor G, Levy A. Viscous Simulation of Shock Reflection Hysteresis in Ideal and Tapered Overexpanded Planar Nozzles[J]. Shock Waves, 2011, 21(3): 205-214.
[41] Matsuo S, Setoguchi T, Nagao J, et al. Experimental Study on Hysteresis Phenomena of Shock Wave Structure in an Over-Expanded Axisymmetric Jet[J]. Journal of Mechanical Science and Technology, 2011, 25(10) : 2559-2565.
[42] 于勇, 徐新文. 拉瓦尔喷管外发生激波反射工况详细分析 [J]. 航空动力学报, 2012, 27(9): 1988-1996.
[43] 陶渊, 范晓樯, 刘俊林. 超声速连续风洞喷管启动过程分析 [J]. 推进技术, 2015, 36(1): 24-29. (TAO Yuan, FAN Xiao-qiang, LIU Jun-lin. Studies on the Starting Process of a Supersonic Continuous Wind Tunnel Nozzle[J]. Journal of Propulsion Technology, 2015, 36(1): 24-29.)
[44] Kudryavtsev A N, Epstein D B. Hysteresis Phenomenon at Interaction of Shock Waves Generated by a Cylinder Array[J]. Shock Waves, 2012, 22(4): 341-349.
[45] Hu Z M, Myong R S, Kimand M S, et al. Downstream Flow Condition Effects on the RR → MR Transition of Asymmetric Shock Waves in Steady Flows[J]. Journal of Fluid Mechanics, 2009, 620: 43-62.
[46] TAO Yuan, FAN Xiaoqiang, ZHAO Yilong. Flow Visualization for the Evolution of the Slipstream in Steady Shock Reflection[J]. Journal of Visualization, 2015, 18(1): 21-24.
[47] Li H, Chpoun A, Ben-Dor G. Analytical and Experimental Investigations of the Reflection of Asymmetric Shock Waves in Steady Flows[J]. Journal of Fluid Mechanics, 1999, 390: 25-43.
[48] Ivanov M S, Ben-Dor G, Elperin T, et al. The Reflection of Asymmetric Shock Waves in Steady Flows: a Numerical Investigation[J]. Journal of Fluid Mechanics, 2002, 496: 71-87.
[49] Ivanov M S, Markelov G N, Kudryavtsev A N, et al. Numerical Analysis of Shock Wave Reflection Transition in Steady Flows[J]. AIAA Journal, 1998, 36(11): 2079-2086.
[50] Khotyanovsky D V, Kudryavtsev A N, Ivanov M S. Numerical Study of Transition Between Steady Regular and Mach Reflection Caused by Freestream Perturbations [C]. Southampton: Proceeding of 22nd International Symposium on Shock Waves, 1999.
[51] Mouton C A. Transition between Regular Reflection and Mach Reflection in the Dual-Solution Domain[D]. California:California Institute of Technology, Ph.D.thesis, 2001.
[52] Kudryavtsev A N, Khotyanovsky D V, Ivanov M S, et al. Numerical Investigations of Transition Between Regular and Mach Reflections Caused by Free-Stream Disturbances[J]. Shock Waves, 2002, 12(2): 157-165.
[53] Henderson L F. The Reflexion of a Shock Wave at a Rigid Wall in the Presence of a Boundary Layer[J]. Journal of Fluid Mechanics, 1967, 30 (4): 699-722.
[54] Green J E. Reflexion of an Oblique Shock Wave by a Turbulent Boundary Layer[J]. Journal of Fluid Mechanics, 1970, 40 (1): 81-95.
[55] TAO Yuan, FAN Xiaoqiang, ZHAO Yilong. Viscous Effects of Shock Reflection Hysteresis in Steady Supersonic Flows[J]. Journal of Fluid Mechanics, 2014, 759: 134-148.
[56] Fomin V M, Hornung H G, Ivanov M S, et al. The Study of Transition Between Regular and Mach Reflection of Shock Waves in Different Wind Tunnels[C]. South Africa: Proceeding of 12th International Mach Reflection Symposium, 1996.
[57] Kudryavtsev A N, Khotyanovsky D V, Markelov G N, et al. Numerical Simulation of Reflection of Shock Waves Generated by Finitewidth Wedge[C]. Southampton: Proceeding of 22nd International Symposium on Shock Waves, 1999.
[58] Irving Brown Y A, Skews B W. Three-Dimensional Effects on Regular Reflection in Steady Supersonic Flows [J]. Shock Waves, 2004, 13(5): 339-349.
[59] Skews B W. Aspect Ratio Effects in Wind Tunnel Studies of Shock Wave Reflection Transition[J]. Shock Waves, 1997, 7(6): 373-383.
[60] Skews B W. Three-Dimensional Effects in Wind Tunnel Studies of Shock Wave Reflection[J]. Journal of Fluid Mechanics, 2000, 407: 85-104.
[61] Sudani N, Sato M, Karasawa T, et al. Irregular Effects on the Transition from Regular to Mach Reflection of Shock Waves in Wind Tunnel Flows[J]. Journal of Fluid Mechanics, 2002, 459: 167-185.
[62] Ben-Dor G, Vasiliev E I, Elperin T, et al. Hysteresis Phenomena in the Interaction Process of Conical Shock Waves: Experimental and Numerical Investigations[J]. Journal of Fluid Mechanics, 2001, 448: 147-174.
[63] Ben-Dor G, Elperin T, Vasiliev E I. Flow-Mach-Number-Induced Hysteresis Phenomena in the Interaction of Conical Shock Waves - a Numerical Investigation[J]. Journal of Fluid Mechanics, 2003, 496: 335-354.
[64] Felthun L T, Skews B W. Dynamic Shock Wave Reflection [J]. AIAA Journal, 2004, 42 (8): 1633-1639.
[65] Mouton C A, Hornung H G. Experiments on the Mechanism of Inducing Transition Between Regular and Mach Reflection[J]. Physics of Fluids, 2008, 20(12): 126103.
[66] Naidoo K, Skews B W. Dynamic Effects on the Transition Between Two-Dimensional Regular and Mach Reflection of Shock Waves in an Ideal, Steady Supersonic Free Stream [J]. Journal of Fluid Mechanics, 2011, 676: 432-460.
[67] Naidoo K, Skews B W. Dynamic Transition from Mach to Regular Reflection of Shock Waves in a Steady Flow[J]. Journal of Fluid Mechanics, 2014, 750: 385-400.
[68] Yao Y, Li S G, Wu Z N. Shock Reflection in the Presence of an Upstream Expansion Wave and a Downstream Shock Wave[J]. Journal of Fluid Mechanics, 2013, 735: 61-90.
[69] Hillier R. Shock-Wave/Expansion-Wave Interactions and the Transition Between Regular and Mach Reflection [J]. Journal of Fluid Mechanics, 2007, 575: 399-424.
[70] Sudani N, Sato M, Karasawa T, et al. Irregular Phenomena of Shock Reflection Transition in a Conventional Supersonic Wind Tunnel[J]. AIAA Journal, 2003, 41(6): 1201-1204.
[71] Gimelshein S F, Markelov G N, Ivanov M S. Real Gas Effects on the Transition Between Regular and Mach Reflections in Steady Flows [R]. AIAA 98-0877.
[72] 高波. 二维定常超音速流中激波马赫反射的波系结构与转捩研究[D]. 北京:清华大学, 2010.(编辑:梅瑛) * 收稿日期:2015-01-31;修订日期:2015-04-30。基金项目:国家自然科学基金(11372347)。作者简介:范晓樯,男,博士,研究员,研究领域为高超声速推进技术。E-mail: xiaoqiangfan@hotmail.com
|