[1] 费成巍, 白广忱. 基于WCFSE-FSVM的转子振动故障诊断方法[J]. 推进技术, 2013, 34(9): 1266-1271. (FEI Cheng-wei, BAI Guang-chen. Rotor Vibration Fault Diagnosis Method Based on WCFSE-FSVM[J]. Journal of Propulsion Technology, 2013, 34(9): 1266-1271.)
[2] 徐启华, 师军, 耿帅. 应用快速多分类SVM的航空发动机故障诊断方法[J]. 推进技术, 2012, 33(6): 962-967. (XU Qi-hua, SHI Jun, GENG Shuai. Aero-Engine Fault Diagnosis by a New Fast Multi-Class Support Vector Algorithm[J]. Journal of Propulsion Technology, 2012, 33(6): 962-967.)
[3] 张赟, 李本威, 贾舒宜, 等. 航空发动机混叠振动信号的欠定盲源分离方法[J]. 推进技术, 2014, 35(4): 553-558. (ZHANG Yun, LI Ben-wei, JIA Shu-yi, et al. Underdetermined Blind Separation of Aeroengine Vibration Signal Mixtures[J]. Journal of Propulsion Technology, 2014, 35(4): 553-558.)
[4] Jolliffe I T. Principal Component Analysis[M]. New York: Springer-Verlag, 2002.
[5] Weixiang Sun, Jin Chen, Jiaqing Li. Decision Tree and PCA-Based Fault Diagnosis of Rotating Machinery[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1300-1317.
[6] 杨帆, 胡金海, 等. 主元分析方法在航空发动机故障检测与诊断中的应用[J]. 机械科学与技术, 2008, 27(3): 330-333.
[7] Fukunaga K. Introduction to Statistical Pattern Recognition[M]. USA: Academic Press, 1990.
[8] Shi K, Liu S, Zhang H, et al. Kernel Local Linear Discriminate Method for Dimensionality Reduction and Its Application in Machinery Fault Diagnosis[J]. Shock and Vibration, 2014,(1): 2-11.
[9] Martinez A M, Kak A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
[10] Scholk?pf B, Smola A, Müller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
[11] Achmad Widodo, Bo-Suk Yang. Application of Nonlinear Feature Extraction and Support Vector Machines for Fault Diagnosis of Induction Motors[J]. Expert Systems with Applications, 2007, 33: 241-250.
[12] Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290: 2323-2326.
[13] Tenenbaum J B, Silva V D, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290: 2319-2323.
[14] Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
[15] Genaro D S, German C D, Jose C. Locally Linear Embedding based on Correntropy Measure for Visualization and Classification[J]. Neurocomputing, 2012, 80: 19-30.
[16] Zhang J P, Li S Z, Wang J. Manifold Learning and Applications in Recognition[J]. Springer, 2005, 168: 281-300.
[17] Jing Han, Jiang Yue, Yi Zhang, et al. Kernel Maximum Likelihood Scaled Locally Linear Embedding for Night Vision Images[J]. Optics & Laser Technology, 2014, 56: 290-298.
[18] Ridder D D, Duin R P W. Locally Linear Embedding for Classification[R]. Technical Report PH-2002-01, Delft University of Technology, 2002.
[19] Kayo O. Locally Linear Embedding Algorithm Extensions and Applications[M]. Finland: Faculty of Technology, University of Oulu, 2006.
[20] Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1990.
[21] Tenenbaum J B, Silva V D, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290: 2319-2323.
[22] Quansheng Jiang, Minping Jia, Jianzhong Hua, et al. Machinery Fault Diagnosis Using Supervised Manifold Learning[J]. Mechanical Systems and Signal Processing, 2009, 23: 2301-2311.
[23] Li F, Tang B P, Yang R S. Rotating Machine Fault Diagnosis Using Dimension Reduction with Linear Local Tangent Space Alignment[J]. Measurement, 2013, 46: 2525-2539. * 收稿日期:2016-01-14;修订日期:2016-04-05。基金项目:国家自然科学基金(51505492);山东省自然科学基金(ZR2013EEQ001);“泰山学者”建设工程专项经费资助。作者简介:张赟,男,博士,讲师,研究领域为航空发动机测试与故障诊断。E-mail: hjhy_zy@126.com(编辑:张荣莉)
|