[1] Denos R. Gas Turbine Research in European Projects[C]. Seville: 2nd Joint EVI-GTI International Gas Turbine Instrumentation Conference, 2008.
[2] Haselbach F, Schiffer H P, Horsman M, et al. The Application of Ultra High Lift Blade in the BR715 LP Turbine[J]. Journal of Turbomachinery, 2002, 124(1):45-51.
[3] Pfeil H, Herbst R. Transition Procedure of Instationary Boundary Layers[R]. ASME GT 1979-128.
[4] 王明杰, 雷志军, 朱俊强. 压气机叶片附面层转捩的试验研究[J]. 工程热物理学报, 2008, 29(3): 419-422.
[5] 李伟, 朱俊强, 李钢, 等. 基于表面热膜的超高负荷低压涡轮叶栅附面层特性[J]. 航空动力学报, 2011, 26(1): 115-121.
[6] 李伟, 张波, 周敏, 等. 尾迹扫掠下超高负荷低压涡轮叶片附面层特性[J]. 航空动力学报, 2012, 27(1): 176-182.
[7] 李伟. 上游尾迹扫掠下超高负荷低压涡轮边界层特性研究[D]. 北京:中国科学院大学, 2012.
[8] 孙爽. 尾迹扫掠耦合粗糙度对超高负荷低压涡轮分离控制的实验研究[D]. 北京:中国科学院大学, 2014.
[9] 张波, 李伟, 卢新根, 等. U型槽对高负荷低压涡轮叶型攻角特性影响[J]. 航空动力学报, 2012, 27(7): 1503-1510.
[10] 张波, 李伟, 卢新根, 等. 变工况下超高负荷低压涡轮叶片边界层被动控制[J]. 航空动力学报, 2012, 12(12): 2805-2813.
[11] 张波, 李伟, 黄恩亮, 等. 超高负荷低压涡轮叶型边界层被动控制[J]. 推进技术, 2012, 33(5): 747-753. (ZHANG Bo, LI Wei, HUANG En-liang, et al. Boundary Layer Passive Control of an Ultra-High-Lift Low-Pressure Turbine Blade[J]. Journal of Propulsion Technology, 2012, 33(5): 747-753.)
[12] 叶建, 邹正平. 逆压梯度下层流分离泡转捩的大涡模拟[J]. 工程热物理学报, 2006, 27(3): 402-404.
[13] 叶建, 邹正平. 低雷诺数下周期性尾迹/层流分离泡相互作用的大涡模拟[J]. 工程热物理学报, 2007, 28(2): 215-218.
[14] 刘火星, 邹正平, 刘强. 尾迹对涡轮叶栅边界层分离影响的流动显示[C]. 上海:中国工程热物理学会热机气动热力学学术会议, 2003.
[15] 杨琳, 冯涛, 邹正平, 等. 低雷诺数涡轮内部流场分析[J]. 北京航空航天大学学报, 2005, 31(11):1194-1197.
[16] 李维, 邹正平. 低雷诺数环境中低压涡轮部件的气动设计探索[J]. 推进技术, 2004, 25(3): 219-223. (LI Wei, ZOU Zheng-ping. Investigation of Aerodynamic Design of Low Pressure Turbine at Low Reynolds Number Conditions[J]. Journal of Propulsion Technology, 2004, 25(3): 219-223.)
[17] 罗华玲. 高负荷低压涡轮叶片气动设计问题数值与实验研究[D]. 西安:西北工业大学, 2009.
[18] 刘波, 管继伟, 陈云永, 等. 用端壁造型减小涡轮叶栅二次流损失的数值研究[J]. 推进技术, 2008, 29(3): 355-359. (LIU Bo, GUAN Ji- wei, CHEN Yun- yong, et al. Numerical Investigation for Effect of Non-Axisymmetric Endwall Profiling on Secondary Flow in Turbine Cascade[J]. Journal of Propulsion Technology, 2008, 29(3): 355-359.)
[19] 王仲奇, 冯国泰, 王松涛, 等. 透平叶片中的二次流旋涡结构的研究[J]. 工程热物理学报, 2002, 23(5):553-556.
[20] Howell R J, Ramesh O N, Hodson H P, et al. High Lift and Aft Loaded Profiles for Low Pressure Turbines[J]. Journal of Turbomachinery, 2001, 124(2): 385-392.
[21] Mayle R. The Role of Laminar-Turbulent Transition in Gas Turbine Engines[J]. Journal of Turbomachinery, 1991, 113: 509-537.
[22] Pfeil H, Herbst R. Transition Procedure of Instationary Boundary Layers[R]. ASME GT 179-128.
[23] Hodson H P, Howell R J. Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines[J]. Annu.Rev.Fluid Mech, 2005, 37: 71-98.
[24] Zhong S, Kittichaikan C, Hodson H P, et al. A Study of Unsteady Wake-Induced Boundary-Layer Transition with Thermochromic Liquid Crystals[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1998, 213(3): 163-171.
[25] Wu X, Jacobs R G, Hunt J C R, et al. Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes[J]. Journal of Fluid Mechanics, 1999, 398:109-153.
[26] Halstead D E, Wisler D C, Okiishi, et al. Boundary Layer Development in Axial Compressor and Turbines:Part 3 of 4-LP Turbines[J]. Journal of Turbomachinery, 1997, 119(2): 225-237.
[27] Schulte V, Hodson H P. Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines[J]. Journal of Turbomachinery, 1998, 120(1): 28-35.
[28] Hodson H P, Dawes W N. On the Interpretation of Measured Profile Losses in Unsteady Wake-Turbine Blade Interaction Studies[J]. Journal of Turbomachinery, 1998, 120(2): 276-284.
[29] Brunner S, Fottner L. Comparison of Two Highly Loaded Low Pressure Turbine Cascades under the Influence of Wake-Induced Transition[R]. ASME GT 2000-268.
[30] Teusch R, Brunner S, Fottner L, et al. The Influence of Multimode Transition Initiated by Periodic Wakes on the Profile Loss of a Linear Compressor Cascade[R]. ASME GT 2000-271.
[31] Lu X G, Zhang Y F, Li W, et al. Effects of Periodic Wakes on Boundary Layer Development on an Ultra-High-Lift Low Pressure Turbine Airfoil[J]. Proc IMechE Part A: Journal of Power and Energy, 2017, 231(1): 25-38.
[32] Hourmouziadis J. Aerodynamic Design of Low Pressure Turbines[R]. AGARD, Blading Design for Axial Turbomachines, 167-1989.
[33] Howell R J, Ramesh O N, Hodson H P, et al. High Lift and Aft Loaded Profiles for Low Pressure Turbines[J]. Journal of Turbomachinery, 2001, 124 (2): 385-392.
[34] Praisner T J, Grover E A, Knezevici D C, et al. Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space[J]. Journal of Turbomachinery, 2013, 135(6).
[35] Coull J D, Thomas R L, Hodson H P. Velocity Distributions for Low Pressure Turbines[J]. Journal of Turbomachinery, 2010, 132(4).
[36] Popovic I, Zhu J, Dai W, et al. Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow[C]. Barcelona: ASME Turbo Expo 2006: Power for Land, Sea, and Air, 2006:961-969.
[37] Zoric T, Popovic I, Sjolander S A, et al. Comparative Investigation of Three Highly Loaded LP Turbine Airfoils, Part I Measured Profile and Secondary Losses at Design Incidence[C]. Montreal: ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2007: 631-638.
[38] Gier J, Franke M, Hübner N, et al. Designing LP Turbines for Optimized Airfoil Lift[C]. Berlin: ASME Turbo Expo 2008: Power for Land, Sea, and Air, 2008: 1345-1358.
[39] Prakash C, Cherry D G, Shin H W, et al. Effect of Loading Level and Distribution on LPT Losses[C]. Berlin: ASME Turbo Expo 2008: Power for Land, Sea, and Air, 2008: 917-925.
[40] Schobeiri M T, ?ztürk B, Ashpis D E. On the Physics of Flow Separation Along a Low Pressure Turbine Blade under Unsteady Flow Conditions[J]. Journal of Fluids Engineering, 2005, 127(3): 503-513.
[41] Houtermans R, Coton T, Arts T. Aerodynamic Performance of a Very High Lift Low Pressure Turbine Blade with Emphasis on Separation Prediction[J]. Journal of Turbomachinery, 2004, 26(3): 406-413.
[42] Montis M, Niehuis R, Fiala A. Effect of Surface Roughness on Loss Behaviour, Aerodynamic Loading and Boundary Layer Development of a Low-Pressure Gas Turbine Airfoil[R]. ASME GT 2010-23317.
[43] Montomoli F, Hodson H, Haselbach F. Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers[J]. Journal of Turbomachinery, 2010, 132(3).
[44] Ramesh O N, Hodson H P, Harvey N W. Separation Control in Ultra-High Lift Aerofoils by Unsteadiness and Surface Roughness[C]. USA: 15th International Symposium on Airbreathing Engines, 2001.
[45] Roman K M. The Effect of Roughness and Wake Unsteadiness on Low-Pressure Turbine Performance[D]. UK: Cambridge University, 2003.
[46] Hodson H P, Dominy R G. Three-Dimensional Flow in a Low Pressure Turbine Cascade at its Design Condition[J]. Journal of Turbomachinery, 1987, 109(2):177-185.
[47] Langston L S. Crossflows in a Turbine Cascade Passage[J]. Journal of Engineering for Power, 1980, 102(4):866-874.
[48] Dossena V, D’Ippolito G, Pesatori E. Stagger Angle and Pitch-Chord Ratio Effects on Secondary Flows Downstream of a Turbine Cascade at Several Off-Design Conditions[C]. Vienna: ASME Turbo Expo 2004: Power for Land, Sea, and Air, 2004: 1429-1437.
[49] Fottner L. The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades[J]. Journal of Turbomachinery, 1995, 117(1): 133-141.
[50] Hodson H P. Boundary Layer and Loss Measurements on the Rotor of an Axial Flow Turbine[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2): 391-399.
[51] Perdichizzi A, Dossena V. Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade[J]. Journal of Turbomachinery, 1993, 115(3): 383-391.
[52] Zoric T, Popovic I, Sjolander S A, et al. Comparative Investigation of Three Highly Loaded LP Turbine Airfoils, Part I: Measured Profile and Secondary Losses at Design Incidence[R]. ASME GT 2007-27537.
[53] Zoric T. Experimental Investigation of Secondary Flows in a Family of Three Highly Loaded Low-Pressure Turbine Cascades[D]. Carleton: Carleton University, 2006.
[54] Duden A, Fottner L. The Secondary Flow Field of a Turbine Cascade with 3D Airfoil Design and Endwall Contouring at Off-Design Incidence[R]. ASME GT 1999-211.
[55] Brear M J, Hodson H P, Gonzalez P, et al. Pressure Surface Separations in Low-Pressure Turbines, Part 2:Interactions with Secondary Flow[J]. Journal of Turbomachinery, 2002, 124, 402-409.
[56] Gregory-Smith D G, Cleak J G E. Secondary Flow Measurements in a Turbine Cascade with High Inlet Turbulence[J]. Journal of Turbomachinery, 1992, 114(1): 173-183.
[57] Matsunama T, Abe H, Tsutsi.Influence of Turbulence Intensity on Annular Turbine Stator Aerodynamics at Low Reynolds Numbers[R]. ASME GT 1999-151.
[58] Schneider C M, Schrack D, Kuerner M, et al. On the Unsteady Formation of Secondary Flow Inside a Rotating Turbine Blade Passage[J]. Journal of Turbomachinery, 2014, 136(6).
[59] Ciorciari R, Kirik I, Niehuis R. Effects of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade[J]. Journal of Turbomachinery, 2014, 136(9).
[60] Murawski C G, Vafai K. Effect of Wake Disturbance Frequency on the Secondary Flow Vortex Structure in a Turbine Blade Cascade[J]. Journal of Fluids Engineering, 2000, 122(3): 606-613.
[61] Satta F, Simoni D, Ubaldi M, et al. Profile and Secondary Flow Losses in a High-Lift LPT Blade Cascade at Different Reynolds Numbers under Steady and Unsteady Inflow Conditions[J]. Journal of Thermal Science, 2012, 21(6): 483-491. * 收稿日期:2017-06-29;修订日期:2017-07-19。基金项目:国家自然科学基金(51476166)。作者简介:朱俊强,男,博士,研究员,研究领域为叶轮机械气动热力学。E-mail: zhujq@iet.cn通讯作者:屈骁,男,博士生,研究领域为叶轮机械气动热力学。E-mail: quxiao@iet.cn(编辑:朱立影)
|