[1] Hergt A, Meyer R, Muller M W, et al. Loss Reduction in Compressor Cascades by Means of Passive Flow Control[R]. ASME 2008-GT-50357.
[2] Lin J C. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation[J]. Progress in Aerospace Sciences, 2002, 38(4): 389-420.
[3] Ahmed M Diaa. Second Flow Control on Axial Flow Compressor Cascade Using Vortex Generators[R]. ASME 2014-GT-37790.
[4] 吴培根, 王如根, 郭飞飞, 等. 涡流发生器对高负荷扩压叶栅性能影响的机理分析[J]. 推进技术, 2016, 37(1): 49-56. (WU Pei-gen, WANG Ru-gen, GUO Fei-fei, et al. Mechanism Analysis of Effects of Vortex Generator on High-Load Compressor Cascade[J]. Journal of Propulsion Technology, 2016, 37(1): 49-56.)
[5] Ruchika Agarwal, Anand Dhamarla, Sridharan R Narayanan. Numerical Investigation on the Effect of Vortex Generator on Axial Compressor Performance[R]. ASME 2014-GT-25329.
[6] Lin J C, Howard F G, Bushnell D M, et al. Investigation of Several Passive and Active Methods for Turbulent Flow Separation Control[C]. Seattle: 21st Plasma Dynamics and Lasers Conference, 1990.
[7] Hergt A, Meyer R, Engel K. The Capability of Influencing Secondary Flow in Compressor Cascades by Means of Passive and Active Method[R]. CEAS 2007-216.
[8] 刘艳明, 钟兢军, 王保国, 等. 具有不同翼刀的压气机叶栅二次流结构分析[J]. 航空动力学报, 2008, 23(7): 1240-1245.
[9] Gb S, Wg S. Forced Mixing in Boundary Layers[J]. Journal of Fluid Mechanics, 1960, 8(1):10-32.
[10] Engel K, Hergt A, Meyer R. Effects of Vortex Generator Application on the Performance of a Compressor Cascade[J]. Journal of Turbomachinery, 2013, 135(2).
[11] Ahmed M Diaa, Mohammed F El-Dosoky, Omar E Abdel-Hafez, et al. Boundary Layer Control of an Axial Compressor Cascade Using Nonconventional Vortex Generators[R]. ASME 2015-GT-52310.
[12] Ahmed M Diaa, Mohammed F El-Dosoky, Omar E Abdel-Hafez, et al. Effect of a New Vortex Generator on the Performance of an Axial Compressor Cascade at Design and Off-Design Conditions[R]. ASME 2015-GT-52293.
[13] R Agarwal, SR Narayanan, SN Goswami. Numerical Analysis on Axial Compressor Stage Performance with Vortex Generators[R]. ASME 2015-GT-43897.
[14] 张燕峰. 高载荷压气机端壁流动及其控制策略研究[D]. 西安:西北工业大学, 2010.
[15] 李相君, 楚武利, 张皓光. 高负荷轴流压气机叶栅二次流动与损失关联性探讨[J]. 推进技术, 2014, 35(7): 914-925. (LI Xiang-jun, CHU Wu-li, ZHANG Hao-guang. Investigation on Relation Between Secondary Flow and Loss on a High Loaded Axial-Flow Compressor Cascade [J]. Journal of Propulsion Technology, 2014, 35(7): 914-925.)
[16] Lighthill M J. Attachment and Separation in Three-Dimensional Flows[M]. UK: Oxford Univ.Press, 1963.
[17] Müller R, Sauer H, Vogeler K, et al. Influencing the Secondary Losses in Compressor Cascades by a Leading Edge Bulb Modification at the Endwall[R]. ASME 2002-GT-30442.
[18] 童秉纲, 尹协远, 朱克勤. 涡运动理论[M]. 合肥:中国科学技术大学出版社, 2009: 16-17.
[19] Huaping Liu, Deying Li, Bingxiao Lu, et. al. Endwall Secondary Flow Control in a High Speed Compressor Cascade with Vortex Generator Jets[R]. ASME 2016-GT-56843. * 收稿日期:2016-10-10;修订日期:2016-12-06。基金项目:国家自然科学基金重点项目(51536006);国家自然科学基金(51576162)。作者简介:李金鸽,女,硕士生,研究领域为叶轮机械气动研究。E-mail: 895357444@qq.com通讯作者:楚武利,男,博士生导师,教授,研究领域为高性能轴流及离心压气机先进流动控制。E-mail: wlchu@nwpu.edu.cn(编辑:朱立影)
|