[1] Boswell R W. Plasma Production Using a Standing Helicon Wave[J]. Physics Letters, 1970, 33A(7): 457-458.
[2] Boswell R W, Chen F F. Helicons-the Early Years[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1229-1244.
[3] Boswell R W. Very Efficient Plasma Generation by Whistler Waves near the Lower Hybrid Frequency[J]. Plasma Physics and Controlled Fusion, 1984, 26(10): 1147-1162.
[4] Charles C. Division of Space Plasma Power and Propulsion[EB/OL]. https://physics.anu.edu.au/cpf/sp3/, 2016.
[5] Boswell R W, Porteous R K. Large Volume, High Density RF Inductively Coupled Plasma[J]. Applied Physics Letters, 1987, 50(17): 1130-1132.
[6] Charles C, Boswell R. Testing Ground Set for Plasma Jar to the Stars[EB/OL]. http://www.researchcareer.com.au/archived-news/testing-ground-set-for-plasma-jar-to-the-stars, 2014.
[7] Mathers N. Wombat Puts Electric Rocket Through its Paces[EB/OL]. http://stories. scienceinpublic. com. au/2014/wombat-puts-electric-rocket-through-its-paces/, 2014.
[8] Charles C, Boswell R. Current-Free Double-Layer Formation in a High-Density Helicon Discharge[J]. Applied Physics Letters, 2003, 82(9): 1356-1358.
[9] Lafleur T A. Helicon Wave Propagation in Low Diverging Magnetic Fields[D]. Canberra: Australian National University, 2011.
[10] Zhang Y, Charles C, Boswell R. Transport of Ion Beam in an Annular Magnetically Expanding Helicon Double Layer Thruster[J]. Physics of Plasmas, 2014, 21(6): 063511.
[11] Zhang Y, Charles C, Boswell R. Characterization of an Annular Helicon Plasma Source Powered by an Outer or Inner RF Antenna[J]. Plasma Sources Science and Technology, 2015, 25 (1): 015007.
[12] Zhang Y, Charles C, Boswell R. Measurement of Bi-Directional Ion Acceleration along a Convergent-Divergent Magnetic Nozzle[J]. Applied Physics Letters, 2016, 108(10): 104101.
[13] Zhang Y, Charles C, Boswell R. Thermodynamic Study on Plasma Expansion along a Divergent Magnetic Field[J]. Physical Review Letters, 2016, 116(2): 025001.
[14] Charles C. Dual Stage 4 Grid Thruster[EB/OL]. https://physics.anu.edu.au/cpf/sp3/ds4g/, 2016.
[15] Boswell R W. Plasma Micro-Thruster[P]. US: wo/2012/151639, 2012.
[16] Boswell R, Charles C, Alexander P, et al. Plasma Expansion from a Radio Frequency Microdischarge[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2512-2513.
[17] Greig A, Charles C, Hawkins R, et al. Direct Measurement of Neutral Gas Heating in a Radio-Frequency Electrothermal Plasma Micro-Thruster[J]. Applied Physics Letters, 2013, 103(7): 074101.
[18] Greig A, Charles C, Paulin N, et al. Volume and Surface Propellant Heating in an Electrothermal Radio-Frequency Plasma Micro-Thruster[J]. Applied Physics Letters, 2014, 105(5): 054102.
[19] Greig A, Charles C, Boswell R. Plume Characteristics of an Electrothermal Plasma Microthruster[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2728-2729.
[20] Charles C, Bish A, Boswell R W, et al. A Short Review of Experimental and Computational Diagnostics for Radiofrequency Plasma Micro-Thrusters[J]. Plasma Chemistry and Plasma Processing, 2016, 36: 29-44.
[21] Charles C. Plasmas for Spacecraft Propulsion[J]. Journal of Physics D: Applied Physics, 2009, 42: 163001.
[22] Corr C S, Boswell R W. Nonlinear Instability Dynamics in a High-Density, High-Beta Plasma[J]. Physics of Plasmas, 2009, 16: 022308.
[23] Bramanti C, Fearn D G. The Design and Operation of Beam Diagnostics for the Dual Stage 4-Grid Ion Thruster[C]. Florence: 30th International Electric Propulsion Conference, 2007.
[24] Charles C, Boswell R W, Bish A. Low-Weight Fixed Ceramic Capacitor Impedance Matching System for an Electrothermal Plasma Microthruster[J]. Journal of Propulsion and Power, 2014, 30 (4): 1117-1121.
[25] West M D, Charles C, Boswell R W. A High Sensitivity Momentum Flux Measuring Instrument for Plasma Thruster Exhausts and Diffusive Plasmas[J]. Review of Scientific Instruments, 2009, 80(5): 053509.
[26] 丁永杰, 扈延林, 颜世林, 等. 聚焦磁场及发散磁场对霍尔推力器壁面侵蚀的影响研究[J]. 推进技术, 2015, 36 (5): 795-800. (DING Yong-jie, HU Yan-lin, YAN Shi-lin, et al. Effects of Focusing and Diverging Magnetic Field Topology on Hall Thruster Channel Wall Erosion[J]. Journal of Propulsion Technology, 2015, 36 (5): 795-800.)
[27] 杨涓, 王与权, 李鹏飞, 等. 无工质微波推力器推力测量实验[J]. 物理学报, 2012, 61(11): 110301.
[28] 杨涓, 李鹏飞, 杨乐. 不同功率下无工质微波推力器的推力预估[J]. 物理学报, 2011, 60(12): 124101.
[29] 夏广庆, 王冬雪, 薛伟华. 螺旋波等离子体推进研究进展[J]. 推进技术, 2011, 32(6): 857-863. (XIA Guang-qing, WANG Dong-xue, XUE Wei-hua. Progress on the Research of Helicon Plasma Thruster[J]. Journal of Propulsion Technology, 2011, 32(6): 857-863.)
[30] 夏广庆, 徐宗琦, 郝剑昆, 等. 双阶栅极螺旋波离子推进装置[P]. 中国: ZL201410597251.2, 2014.(编辑:朱立影) * 收稿日期:2017-06-05;修订日期:2017-08-31。基金项目:国家自然科学基金(11405271;11372104;75121543;11332013;11372363;11502037);中国博士后科学基金 (2017M612901);重庆市基础科学与前沿技术研究专项(cstc2017jcyjA0744);中央高校基本科研业务费专项资金 (20822041A4261)。作者简介:苌磊,男,博士,副研究员,研究领域为等离子体推进、磁约束核聚变、空间等离子体物理和低温等离子体等。 E-mail: leichang@scu.edu.cn通讯作者:胡宁,男,博士,教授,研究领域为材料力学。E-mail: ninghu@cqu.edu.cn
|