[1] Daniau E, Falempin F, Getin N, et al. Design of a Continuous Detonation Wave Engine for Space Application[R]. AIAA 2006-4794.
[2] Braun E M, Lu F K, Wilson D R, et al. Airbreathing Rotating Detonation Wave Engine Cycle Analysis[J]. Aerospace Science and Technology, 2013, 27(1): 201-208.
[3] 王建平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展[J]. 实验流体力学, 2015, 29(4): 12-25.
[4] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonation of Fuel-Air Mixtures[J]. Combustion, Explosion, and Shock Waves, 2006, 42(4): 463-471.
[5] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonation of a Hydrogen-Air Mixture with Addition of Air into the Products and the Mixing Region[J]. Combustion, Explosion, and Shock Waves, 2010, 46(1): 52-59.
[6] Bykovskii F A, Zhdan S A, Vedernikov E F, et al. Effect of Combustor Geometry on Continuous Spin Detonation in Syngas-Air Mixtures[J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 688-699.
[7] Kindracki J. Experimental Research on Rotating Detonation in Liquid Fuel-Gaseous Air Mixtures[J]. Aerospace Science and Technology, 2015, 43: 445-453.
[8] Zheng Quan, Weng Chun-sheng, Bai Qiao-dong. Experimental Research on the Propagation Process of Continuous Rotating Detonation Wave[J]. Defence Technology, 2013, 9(4): 201-207.
[9] 郑权, 翁春生, 白桥栋. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究[J]. 推进技术, 2015, 36(6): 947-952. (ZHENG Quan, WENG Chun-sheng, BAI Qiao-dong. Experimental Study on the Effect of Equivalent Ratio on Detonation Characteristics of Liquid-Fueled Rotating Detonation Engine[J]. Journal of Propulsion Technology, 2015, 36(6): 947-952.)
[10] 李宝星, 翁春生. 连续旋转爆轰发动机气液两相爆轰波传播特性二维数值研究[J]. 固体火箭技术, 2015, 38(5): 646-652.
[11] Wang J P, Shao Y T. Rotating Detonation Engine Injection Velocity Limit and Nozzle Effects on its Propulsion Performance[A]. Kuzmin A.Computational Fluid Dynamics 2010[C]. Berlin: Spring, 2011.
[12] Zhou R, Wang J P. Numerical Investigation of Flow Particle Paths and Thermodynamic Performance of Continuously Rotating Detonation Engines[J]. Combustion and Flame, 2012, 159(12): 3632-3645.
[13] 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙:国防科学技术大学, 2012.
[14] 刘世杰, 林志勇, 刘卫东, 等. 连续旋转爆震波传播过程研究 (Ⅱ): 双波对撞传播模式[J]. 推进技术, 2014 35(2): 269-275. (LIU Shi-jie, LIN Zhi-yong, LIU Wei-dong, et al. Research on Continuous Rotating Detonation Wave Propagation Process (Ⅱ) Two-Wave Collision Propagation Mode[J]. Journal of Propulsion Technology, 2014, 35(2): 269-275.)
[15] Schwer D A, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines[R].AIAA 2011-581.
[16] 陈洁, 王栋, 马虎, 等. 轴向长度对旋转爆震发动机的影响[J]. 航空动力学报, 2013, 28(4): 844-849.
[17] Bykovskii F A, Zhdan S A, Vedernikov E F. Reactive Thrust Generated by Continuous Detonation in the Air Ejection Mode[J]. Combustion, Explosion, and Shock Waves, 2013, 49(2): 188-195.
[18] Suchocki J A, Yu S T J, Hoke J L, et al. Rotating Detonation Engine Operation[R]. AIAA 2012-0119.
[19] Kindracki J, Wolański P, Gut Z. Experimental Research on the Rotating Detonation in Gaseous Fuels-Oxygen Mixtures[J]. Shock Waves, 2011, 21(2): 75-84.
[20] 林伟, 周进, 林志勇, 等. H2/Air连续旋转爆震发动机推力测试 (II) 双波模态下的推力[J]. 推进技术, 2015, 36(5): 641-649. (LIN Wei, ZHOU Jin, LIN Zhi-yong, et al. Thrust Measurement of H2/Air Continuously Rotating Detonation Engine (II) Thrust under Dual Wave Mode[J]. Journal of Propulsion Technology, 2015, 36(5): 641-649.)
[21] Frolov S M, Aksenov V S, Dubrovskii A V, et al. Energy Efficiency of a Continuous-Detonation Combustion Chamber[J].Combustion, Explosion, and Shock Waves, 2015, 51(2): 232-245. 收稿日期:2017-07-15;修订日期:2017-09-20。基金项目:国家自然科学基金(11472138);国防预研基金(9140c300202120c30);中央高校基本科研业务专项资金 (30920140112011)。作者简介:郑权,男,博士,研究领域为爆轰推进。E-mail: quanta_2003@163.com(编辑:史亚红)
|