推进技术 ›› 2020, Vol. 41 ›› Issue (6): 1217-1226.DOI: 10.13675/j.cnki.tjjs.190502

• 总体与系统 • 上一篇    下一篇

深冷组合循环发动机吸气模态循环分析与设计可行域研究

高远1,陈玉春1,王治华1,李浩敏1,蔡飞超1   

  1. 西北工业大学 动力与能源学院,陕西 西安 710072
  • 发布日期:2021-08-15
  • 作者简介:高 远,博士生,研究领域为组合发动机总体设计。E-mail:gaoyuan_npu@mail.nwpu.edu.cn

Cycle Analysis and Design Feasible Region Research of DeeplyPrecooled Combined Cycle Engine in Airbreathing Mode

  1. School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
  • Published:2021-08-15

摘要: 为了研究类似SABRE3结构的深冷组合循环发动机,建立了基于部件法的发动机设计点热力学计算模型,提出了发动机氦循环新的循环效率和循环特征参数的定义。考虑发动机参数的物理限制条件及不同工质循环之间的相互影响,求解得到了空气路、氦气路重要参数的设计可行域。在可行域内开展了空气路和氦气路的循环分析,获到了冷却当量比、性能参数等主要参数的分布结果。结果表明:此发动机空气热功转换比ηt2为0.02~0.746。氦循环设计可行域受ηt2及换热器热负荷限制;循环起始温度和热负荷限制确定的情况下,ηt2越低氦循环可行域越窄。降低发动机冷却当量比的关键是:提高换热器1的氦出口温度以降低氦流量;当换热器1和换热器2的氦出口温度同时取得最大值时,冷却当量比取得最小值。换热器1和2的氦出口温度分别取1200K和1300K时,空气路可行域内冷却当量比为0.917~2.64。

关键词: 深冷组合循环发动机;循环分析;循环热效率;设计可行域;冷却燃料当量比

Abstract: To study deeply precooled combined cycle engine with the scheme similar to SABRE3, a thermodynamic calculation model of engine design point was established based on component method. A new cycle efficiency and cycle characteristic parameter were defined for the engine helium cycle. Considering the physical constraints of the engine and the interaction effects between different working fluids, the design feasible regions of air fluid and helium fluid can be obtained. The cycle analysis of air fluid and helium fluid was carried out in their feasible regions, and the distributions of main engine parameters such as cooling fuel equivalent ratio and performance were calculated. The results show that the range of air heat-to-work ratio (ηt2) is 0.02~0.746. The feasible region of the helium cycle is limited by ηt2 and the thermal load of the heat-exchanger (HX). When the initial temperature of helium cycle and the thermal load limit are determined, the lower the ηt2, the narrower the feasible region of helium cycle is. The key for reducing the cooling fuel equivalent ratio is to reduce the helium mass flow rate by increasing helium outlet temperature of HX1. When the helium outlet temperatures of HX1 and HX2 reach the maximum value simultaneously, the cooling fuel equivalent ratio takes its minimum value. When the outlet temperatures of the HX1 and HX2 are 1200K and 1300K, respectively, the cooling fuel equivalent ratio ranges from 0.917 to 2.64 in air cycle feasible regions.

Key words: Deeply precooled combined cycle engine;Cycle analysis;Thermal cycle efficiency;Design feasible region;Cooling fuel equivalent ratio