A Study of Flow Characteristics in Isolator with Effects ofBoundary Layer Suction and Oscillating Back Pressure
1.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China;2.Science and Technology on Scramjet Laboratory of Hypervelocity Aerodynamics Institute,CARDC, Mianyang 621000,China
[1] Matsuo K, Miyazato Y, Kim H. Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100.
[2] 李 博, 梁德旺. 高超声速进气道-隔离段反压引起不起动计算[J]. 推进技术, 2006, 27(5): 431-435. (LI Bo, LIANG De-wang. Calculation of Unstarted Flow in Hypersonic Inlet-Isolator with High Back Pressure[J]. Journal of Propulsion Technology, 2006, 27(5): 431-435.)
[3] 金 亮, 吴先宇, 罗世彬, 等. 隔离段反压对激波串起始位置的影响[J]. 推进技术, 2008, 29(1): 54-57.
[4] Yu K, Pang B, Hsu O. Implementing Active Combustion Control in Propulsion Systems[R]. AIAA2001-3849.
[5] Ma F H, Li J, Yang V. Thermo Acoustic Flow Instability in a Scramjet Combustor[R]. AIAA2005-3824.
[6] Lin K C, Ma F H, Li J, et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Recessed Cavity Flame Holder[R]. AIAA2007-5382.
[7] Lin K C, Jackson K, Behdadnia R, et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flame Holder[J]. Journal of Propulsion and Power, 2010, 26(6): 1161-1169.
[8] Morris M J, Sajben M, and Kroutil J C. Experimental Investigation of Normal Shock/Turbulent Boundary Layer Interactions with and Without Mass Removal[J]. AIAA Journal, 1992, 30(2): 359-366.
[9] Harloff G J, and Smith G E. Supersonic-Inlet Boundary-Layer Bleed Flow[R]. NASA-CR-195426, 1995.
[10] Tindell R, and Willis B. Experimental Investigation of Blowing for Controlling Oblique Shock/Boundary Layer Interactions[R]. AIAA97-2642.
[11] Delery J M. Shock Wave/Turbulent Boundary Layer Interaction and Its Control[J]. Progress in Aerospace Sciences, 1985, 22(4): 209-280.
[12] McCormick D C. Shock/Boundary-Layer Interaction Control with Vortex Generators and Passive Cavity[J]. AIAA Journal, 1993, 31(1): 91-96.
[13] 陈 逖, 高超声速进气道内激波/边界层干扰及射流式涡流发生器的流动控制方法研究[D]. 长沙:国防科技大学, 2011.
[14] Chyu W J, Rimlinger M J, Shih T P. Control of Shock-Wave Boundary-Layer Interactions by Bleed[J]. AIAA Journal, 1995, 33(7): 1239-1247.
[15] Weiss A, Grzona A, Olivier H. Behavior of Shock Trains in a Diverging Duct[J]. Experiments in Fluids, 2010, 49(2): 355-365.
[16] Weiss A, Olivier H. Shock Boundary Layer Interaction under the Influence of a Normal Suction Slot[J]. Shock Waves, 2014, 24(1): 11-19.
[17] 马生虎, 岳连捷, 贾轶楠, 等. 隔离段抽吸引起的激波迟滞现象研究[J]. 推进技术, 2017, 38(4): 732-739.
[18] 曹学斌, 张堃元. 超燃冲压发动机隔离段非对称来流下激波串受迫振荡流动研究[J]. 空气动力学学报, 2011, 29(2): 135-141.
[19] 曹学斌. 矩形隔离段流动特性及控制规律研究[D]. 南京:南京航空航天大学, 2011.
[20] 田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性实验研究[J]. 推 进技术, 2014, 35(8): 1030-1039. (TIAN Xu-ang, WANG Cheng-peng, CHENG Ke-ming. Experimental Investigation of Dynamic Characteristics of Oblique Shock Train in Mach 5 Flow[J]. Journal of Propulsion Technology, 2014, 35(8): 1030-1039.)
[21] 熊 冰, 王振国, 范晓樯, 等. 隔离段内正激波串受迫振荡特性研究[J]. 推进技术, 2017, 38(1): 1- 7.
[22] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2005.
[23] 田 野, 乐嘉陵, 杨顺华, 等. 乙烯燃料超燃冲压发动机流场振荡及其控制研究[J]. 推进技术, 2015, 36(7): 961-967.
[24] 何 粲, 邢建文, 肖保国, 等. 反压对隔离段激波串结构的影响[J]. 航空动力学报, 2016, 31(5): 1243-1251.
[25] Yu K, Pang B, Hsu O. Implementing Active Combustion Control in Propulsion Systems[R]. AIAA2001-3849
[26] Chapman D R, Kuehn D M, Larson H K. Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition[R]. NACA Report 1356, 1958.
[27] Von Neumann J. Refraction, Intersection and Reflection of Shock Waves[R]. Navord Report 203-45, 1945.
[28] Tao Y, Fan X Q, Zhao Y L. Viscous Effects of Shock Reflection Hysteresis in Steady Supersonic Flows[J]. Journal of Fluid Mechanics, 2014, 759(1): 134-148.