Study on Probabilistic Storage Life Prediction of SolidRocket Motor Grain under Constant Strain
1.School of Mechatronic Engineering,North University of China,Taiyuan 030051,China;2.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
ZHOU Dong-mo1,LIU Xiang-yang2,ZHANG Peng-jun1,WANG Hui-yuan1,ZHANG Cheng-qing1. Study on Probabilistic Storage Life Prediction of SolidRocket Motor Grain under Constant Strain[J]. Journal of Propulsion Technology, 2019, 40(9): 2121-2129.
[1] 高 鸣, 徐廷学. 固体火箭发动机药柱可靠性及寿命预估研究[J]. 固体火箭技术, 2008, 31(3): 220-224.
[2] 唐国金, 雷勇军, 田四朋, 等. 推进剂药柱结构完整性分析与固体火箭发动机贮存寿命预估综述[C]. 宜昌:中国航空学会航空动力分会火箭发动机专业委员会2006年学术年会, 2006.
[3] 邢耀国, 董可海. 固体火箭发动机寿命预估研究的发展和展望[J]. 固体火箭技术, 2001, 24(3): 30-33.
[4] 杨继坤, 徐廷学, 董 琪, 等. 固体火箭发动机装药贮存寿命预测方法[J]. 推进技术, 2013, 34(3):416-421.
[5] 唐国金, 申志彬, 田四朋, 等. 固体火箭发动机药柱概率贮存寿命预估[J]. 兵工学报, 2012, 32(3): 301-306.
[6] 张海联. 固体火箭发动机药柱的粘弹性不确定结构分析[D]. 长沙:国防科学技术大学, 2002.
[7] Heller R A, Kamat M P, Singh M P. Probability of Solid-Propellant Motor Failure Due to Environmental Temperatures[J]. Journal of Spacecraft & Rockets, 1979, 16(3): 140-146.
[8] Collingwood G A, Dixon M D, Clark L M, et al. Solid Rocket Motor Service Life Prediction Using Nonlinear Viscoelastic Analysis and a Probabilistic Approach[R]. SEE N97-29986.
[9] Burton R W, Chappell R N, Jensen F R. Statistical Service Life Prediction-Minuteman Third-Stage Propellant Grain [J]. Journal of Spacecraft & Rockets, 1968, 5(1): 42-46.
[10] 刘兵吉. 固体推进剂延伸率可靠寿命计算[J]. 推进技术, 1990, 11(4): 46-50.
[11] 张兴高. HTPB推进剂贮存老化特性及寿命预估研究[D]. 长沙:国防科学技术大学, 2009.
[12] Celina M, Minier L, Assink R. Development and Application of Tools to Characterize the Oxidative Degradation of AP/HTPB/Al Propellants in a Propellant Reliability Study[J]. Thermochimica Acta, 2002, 384(1): 343-349.
[13] 唐国金, 申志彬, 田四朋. 固体火箭发动机药柱概率贮存寿命预估[J]. 兵工学报, 2012, 33(3): 301-306.
[14] 田四朋. 固体火箭发动机药柱三维粘弹性随机有限元分析及概率贮存寿命预估[D]. 长沙:国防科学技术大学, 2007.
[15] Heller R A, Singh M P. Thermal Storage Life of Solid-Propellant Motors[J]. Journal of Spacecraft & Rockets, 1983, 20(2): 144-149.
[16] 张 昊, 彭 松, 庞爱民. 固体推进剂应力和应变与使用寿命关系[J]. 推进技术, 2006, 27(4): 372-375.
[17] Manjari R, Somasundaran U I, Joseph V C, et al. Structure-Property Relationship of HTPB-Based Propellants II. Formulation Tailoring for Better Mechanical Properties[J]. Journal of Applied Polymer Science, 1993, 48(2): 279-289.
[18] Myers G E. Chemical Structural Aging Effects[R]. ADA000538, 1974.
[19] 鲁国林, 罗怀德. 定应变下丁羟推进剂贮存寿命预估[J]. 推进技术, 2000, 21(1): 79-81.
[20] 王鸿范, 罗怀德. 定应变对丁羟推进剂老化作用初探[J]. 固体火箭技术, 1997, (2): 37-42.
[21] Zhou D, Liu X, Sui X, et al. Effect of Pre-Strain During Ageing on the Maximum Elongation of Composite Solid Propellants and Its Modeling[J]. Polymer Testing, 2016, 50: 200-207.
[22] 蒙上阳, 许 萌, 章 曙, 等. 基于粘弹性有限元方法的固体导弹发动机寿命预估[J]. 广西科学, 2010, 17(1): 56-60.
[23] Raman S N, Ngo T, Lu J, et al. Experimental Investigation on the Tensile Behavior of Polyurea at High Strain Rates[J]. Materials & Design, 2013, 50(17): 124-129.
[24] 张正禄. 工程测量学[M]. 武汉:武汉大学出版社, 2005.
[25] 孙金云. 固体推进剂类粘弹性材料结构可靠性分析[D]. 哈尔滨:哈尔滨工程大学, 2006.
[26] 常新龙, 简 斌, 刘承武, 等. HTPB推进剂定应变老化性能实验[J]. 推进技术, 2010, 31(5): 576-580.