Analysis Procedure and Numerical Simulation of Failure Probability of Turbine Disk Caused by Defects
1.School of Energy and Power Engineering,Beihang University,Beijing 100191,China;2.Collaborative Innovation Center for Advanced Aero-Engine,Beijing 100191,China
WANG Jia-liang1,2,WEI Da-sheng1,2,WANG Yan-rong1,2,ZHANG Kai1,2,ZHONG Bo1,2. Analysis Procedure and Numerical Simulation of Failure Probability of Turbine Disk Caused by Defects[J]. Journal of Propulsion Technology, 2019, 40(11): 2562-2570.
[1] 刘成立, 吕振宙, 徐有良. 粉末冶金涡轮盘裂纹扩展寿命可靠性灵敏度分析[J]. 稀有金属材料与工程, 2006, 35(5): 761-765.
[2] 徐凌志, 吴小丽, 吕文林. 粉末冶金盘中夹杂位置随机性的裂纹扩展失效概率分析方法[J]. 机械科学与技术, 2001, 20(3): 440-441.
[3] Yang J N, Chen S U. Fatigue Reliability of Gas Turbine Engine Components under Scheduled Inspection Maintenance[J]. Journal of Aircraft, 1985, 22(5): 415-422.
[4] Lin K Y, Styuart A V. Probabilistic Approach to Damage Tolerance Design of Aircraft Composite Structures[J]. Journal of Aircraft, 2007, 44(4): 1309-1317.
[5] Wu Y T, Enright M P, Millwater H R. Probabilistic Methods for Design Assessment of Reliability with Inspection[J]. AIAA Journal, 2002, 40(5): 937-946.
[6] Turbine Rotor Material Design—Final Report. Southwest Research Inst., Signal Allied,General Electric Aircraft Engines,Pratt and Whitney Aircraft (United Technolo-gies), Rolls-Royce, and Scientific Ferming Technologies[R].
[7] McClung R C, Leverant G R, Wu Y T, et al. Development of a Probabilistic Design System for Gas Turbine Rotor Integrity[C]. Beijing: International Fatigue Conference, 1999.
[8] Enright M P, Millwater H R, Huyse L. Adaptive Optimal Sampling Methodology for Zone-Based Probabilistic Life Prediction[R]. AIAA2004-1829.
[9] 董玉华, 余大涛, 高惠临. Monte-Carlo 法计算含缺陷油气输送管线的失效概率[J]. 机械工程学报, 2004, 40(2): 136-140.
[10] 陈国华. 含缺陷压力容器失效概率分析方法初步研究[J]. 化工机械, 1996, 23(4): 40-43.
[11] Garza J, Millwater H. Sensitivity of Probability of Failure Estimates with Respect to Probability of Detection Curve Parameters[J]. International Journal of Pressure Vessels and Piping, 2012, 92(1): 84-95.
[12] Guidance Material for Aircraft Engine Life-Limited Parts Requiremants[R]. U.S. Dept. Transportation of, Federal Aviation Administration, Rept. AC 33.70.1 Washington, DC, July. 2009.
[13] Guidance Material for 14 Cfr § 33.75, Safety Analysis [R]. U.S. Dept. of Transportation, Federal Aviation Administration, Rept. AC 33.75.1, Washington, DC, Mar. 2005.
[14] Michael P E, Stephen J H, McClung R C. Application of Probabilistic Fracture Mechanics to Prognosis of Aircraft Engine Components[J]. AIAA Journal, 2006, 44(2):311-316.
[15] Millwater H R, Enright M P, Fitch S H K. A Convergent Probabilistic Technique for Risk Assessment of Gas Turbine Disks Subject to Metallurgical Defects[R]. AIAA2002-1382.
[16] Damage Tolerance of Hole Feature in High-Energy Turbine Engine Rotors[R]. U.S. Dept. Transportation of, Federal Aviation Administration, Rept. AC 33.70.2, Washington, DC, Aug. 2009.
[17] Ding S, Wang Z, Qiu T, et al. Probabilistic Failure Risk Assessment for Aeroengine Disks Considering a Transient Process[J]. Aerospace Science and Technology, 2018, 78: 696-707.
[18] Wang R, Liu X, Hu D, et al. Zone-Based Reliability Analysis on Fatigue Life of GH720Li Turbine Disk Concerning Uncertainty Quantification[J]. Aerospace Science and Technology, 2017, 70: 300-309.
[19] 魏大盛, 杨晓光, 王延荣. 基于缺陷分布形式的粉末冶金涡轮盘可靠度计算模型[J]. 机械工程学报, 2008, 44(11): 132-137.
[20] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1981.
[21] 中国航空研究院. 应力强度因子手册(增订版)[M]. 北京: 科学出版社, 1993.
[22] 魏大盛, 杨晓光, 王延荣. 基于缺陷概率特点的粉末冶金材料寿命预测概率模型[J]. 航空动力学报, 2005, 20(6): 951-957.