Investigation on Particle Supply Technology and Light Focusing Technology for Plasmonic Force Thruster
1.Center for Information Geoscience,College of Resource and Environment,University of Electronic Science and Technology of China,Chengdu 611731,China;2.Shanghai Institute of Space Propulsion,Shanghai 201112,China;3.Shanghai Engineering Research Center of Space Engine,Shanghai 201112,China
[1] Rovey J L, Friz P D, HU Changyu, et al. Plasmonic Force Space Propulsion[J]. Journal of Spacecraft and Rockets, 2015, 52(4): 1163-1168.
[2] Taisen Z, Alexey S, lsak B, et al. Ion Velocities in a Micro-Cathode Arc Thruster[J]. Physics of Plasmas, 2012, 19(6): 661-665.
[3] 于 博, 张 岩, 贺伟国, 等. 超声波电喷推力器羽流中和特性研究[J]. 物理学报, 2018, 67(4): 1-12.
[4] Coletti M, Guarducci F, Gabriel S B. A Micro PPT for Cubesat Application: Design and Preliminary Experimental Results[J]. Acta Astronautica, 2011, 69(3): 200-208.
[5] Schuller J A, Barnard E S, Cai W, et al. Plasmonics for Extreme Light Concentration and Manipulation[J]. Nature Materials, 2010, 9(3): 193-204.
[6] Yang X, Liu Y, Oulton R F, et al. Optical Forces in Hybrid Plasmonic Waveguides[J]. Nano Letters, 2011, 11(2): 321-328.
[7] Tang C, Wang Q, Liu F, et al. Optical Forces in Twisted Split-Ring-Resonator Dimer Stereometamaterials [J]. Optics Express, 2013, 21(10): 11783-11792.
[8] Batchelder J S, Taubenblatt M A. Interferometric Detection of Forward Scattered Light from Small Particles[J]. Applied Physics Letters, 1989, 55(3): 215-217.
[9] Juan M L, Righini M, Quidant R. Plasmon Nano-Optical Tweezers[J]. Nature Photonics, 2011, 5(6): 349-356.
[10] Jiao J, Qing Z, Gao F Liang, et al. Enhancement of Focusing Energy of Ultra-Thin Planar Lens Through Plasmonic Resonance and Coupling[J]. Optics Express, 2014, 22(21): 26277-26284.
[11] Jiao J, Li X, Huang X, et al. Improvement of Focusing Efficiency of Plasmonic Planar Lens by Oil Immersion[J]. Plasmonics, 2015, 10(3): 539-545.
[12] Jiao J, Gao L, Guo J, et al. Study on Focusing Properties of Broadband Range and Oblique Incidence on the Basis of V-Shaped Nanoantenna [J]. Applied Physics A, 2016, 122: 942-948.
[13] 于 博, 焦 蛟, 康小录, 等. 一种新型维纳量级的推进概念研究[J]. 推进技术, 2018, 39(6): 1434-1440.
[14] Maser J N, Rovey J L, Yang Xiaodong, et al. Fabrication of Asymmetric Nanostructures for Plasmonic Force Propulsion [C]. San Diego: 54th AIAA Aerospace Sciences Meeting, 2016.
[15] Robert T. Electrohydrodynamic Behavior of Single Spherical or Cylindrical Conducting Particles in an Insulating Liquid Subject to a Uniform DC Field[J]. Applied Physics, 1996, 29: 2595-2608.
[16] Louis M, Thomas L, Brian G, et al. Electrostatic Charging of Micro- and Nano-Particles for Use with Highly Energetic Applications[J]. Journal of Electrostatics, 2009, 67: 54-61.
[17] Louis M. Investigation of a Micro-and Nano-Particles In-Space Electrostatic Propulsion Concept[D]. Michigan: University of Michigan, 2009.
[18] Oh Y. Computational Modeling of Expanding Plasma Plumes in Space Using a PIC-DSMC Algorithm[D]. Cambridge: Massachusetts Institute of Technology, 1997.
[19] Fife M. Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters[D]. Cambridge: Massachusetts Institute of Technology, 1998.
[20] 李广信, 张丙印, 于玉贞. 土力学[M]. 北京:清华大学出版社, 2013.
[21] 韩燕龙, 贾富国, 唐玉荣, 等. 颗粒滚动摩擦系数对堆积特性的影响 [J]. 物理学报, 2014, 63(17): 165-171.