Simulation of Start-Up Transient Process for Hydroxylamine Nitrate-Based Liquid Monopropellant Rocket Engine
1.Key Laboratory of Advanced Technology for Aerospace Vehicle of Liaoning Province,School of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China;2.Shanghai Institute of Space Propulsion,Shanghai 201112,China
SUN De-chuan1,YAO Tian-liang2. Simulation of Start-Up Transient Process for Hydroxylamine Nitrate-Based Liquid Monopropellant Rocket Engine[J]. Journal of Propulsion Technology, 2020, 41(1): 58-64.
[1] Sackheim R L, Masse R K. Green Propulsion Advancement: Challenging the Maturity of Monopropellant Hydrazine[J]. Journal of Propulsion and Power, 2014, 30(2): 265–276.
[2] Kang H, Kwon S. Experiment and Speculations on Nontoxic Hypergolic Propulsion with Hydrogen Peroxide[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1230-1234.
[3] Amrousse R, Katsumi T, Azuma N, et al. Hydroxylammonium Nitrate (HAN)-Based Green Propellant as Alternative Energy Resource for Potential Hydrazine Substitution: from Lab Scale to Pilot Plant Scale-Up[J]. Combustion and Flame, 2017, 176: 334–348.
[4] Jing L, You X, Huo J, et al. Experimental and Numerical Studies of Ammonium Dinitramide Based Liquid Propellant Combustion in Space Thruster[J]. Aerospace Science and Technology, 2017, 69: 161-170.
[5] 陈永康, 陈也弘, 安振涛, 等. HAN-基凝胶推进剂的热分解反应动力学[J]. 火炸药学报, 2016, 39(4): 77-81.
[6] Amrousse R, Hori K, Fetimi W, et al. HAN and ADN as Liquid Ionic Monopropellants: Thermal and Catalytic Decomposition Processes[J]. Applied Catalysis B: Environmental, 2012, 127: 121-128.
[7] Agnihotri R, Oommen C. Cerium Oxide Based Active Catalyst for Hydroxylammonium Nitrate (HAN) Fueled Monopropellant Thrusters[J]. RSC Advances, 2018, 8(40): 22293-22302.
[8] Amrousse R, Katsumi T, Itouyama N, et al. New HAN-Based Mixtures for Reaction Control System and Low Toxic Spacecraft Propulsion Subsystem: Thermal Decomposition and Possible Thruster Applications[J]. Combustion and Flame, 2015, 162: 2686-2692.
[9] 潘玉竹. HAN 基液体推进剂高压燃烧特性的实验研究与数值模拟[D]. 南京:南京理工大学, 2013.
[10] Katsumi T, Inoue T, Nakatsuka J, et al. HAN-Based Green Propellant, Application, and Its Combustion Mechanism[J]. Combustion, Explosion, and Shock Waves, 2012, 48(5): 536-543.
[11] Chen J, Li G, Zhang T, et al. Experimental Investigation of the Catalytic Decomposition and Combustion Characteristics of a Non-Toxic Ammonium Dinitramide (ADN)-Based Monopropellant Thruster[J]. Acta Astronautica, 2016, 129: 367-373.
[12] Wada A, Watanabe H, Takegahara H. Combustion Characteristics of a Hydroxylammonium-Nitrate-Based Monopropellant Thruster with Discharge Plasma System[J]. Journal of Propulsion and Power, 2018, 34(4): 1052-1060.
[13] Schmitz B W, Smith W W, Williams D A, et al. Design and Scaling Criteria for Monopropellant Hydrazine Rocket Engines and Gas Generators Employing Shell 405 Catalyst[R]. AIAA 66-594.
[14] 周汉申. 单组元液体火箭发动机设计与研究[M]. 北京:中国宇航出版社, 2009.
[15] Kesten A S. Analytical Study of Catalytic Reactors Which Promote Endothermic Reactions of Hydrocarbon Fuels[R]. AIAA 69-588.
[16] Kesten A S. Turbulent Diffusion of Heat and Mass in Catalytic Reactors for Hydrazine Decomposition[J]. Journal of Spacecraft, 1970, 7(1): 31-36.
[17] Gao Z G, Li G X, Zhang T, et al. Numerical Simulation for the Decomposition of DT-3 in a Monopropellant Thruster[J]. Aerospace Science and Technology, 2018, 74: 132-144.
[18] 孙得川, 金东洙, 于泽游. 硝酸羟胺基单组元发动机起动过程数值模拟[J]. 兵器装备工程学报, 2018, 39(5): 5-10.
[19] Zhou X, Hitt D L. Numerical Modeling of Monopropellant Decomposition in a Micro-Catalyst Bed[R]. AIAA 2005-5033.
[20] Widdis S J, Asante K, Hitt D L, et al. A Mems-Based Catalytic Microreactor for a H2O2 Monopropellant Micropropulsion System[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1250-1258.
[21] Vestnes F. A CFD-Model of the Fluid Flow in a Hydrogen Peroxide Monopropellant Rocket Engine in Ansys Fluent 16.2[D]. Trondheim Norway: Norwegian University of Science and Technology, 2016.
[22] Zhang T, Li G, Yu Y, et al. Numerical Simulation of Ammonium Dinitramide (ADN)-Based Non-Toxic Aerospace Propellant Decomposition and Combustion in a Monopropellant Thruster[J]. Energy Conversion and Management, 2014, 87: 965-974.
[23] Jing L, Huo J, You X, et al. The Combustion Process of ADN-Based Liquid Propellant in Attitude Control Engine[C]. Leeds, UK: 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2015.
[24] 吴 迪. 催化床对凝胶火箭发动机工作过程的影响[J]. 兵器装备工程学报, 2016, 37(5): 61-65.
[25] 孙得川, 陈 杰, 林庆国. 喷管性能的化学动力学分析[J]. 推进技术, 2003, 24(3): 222-224. (SUN De-chuan, CHEN Jie, LIN Qing-guo. Chemical Kinetics Analysis for Nozzle Performance[J]. Journal of Propulsion Technology, 2003, 24(3): 222-224.)
[26] 郑坤灿, 侯戎彬, 王景甫, 等. 基于孔喉模型的多孔介质对流换热系数的分形研究[J]. 科学技术与工程, 2014, 14(28): 44-49.