Analysis and Improvement of Thermal Conductive Characteristics of Bipropellant 25N Thruster in Pulse Working Mode
1.Beijing Institute of Control Engineering,Beijing 100190,China;2.Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology,Beijing 100190,China;3.Institute of Multiscale Thermofluids,School of Engineering,The University of Edinburgh,EH9 3FD,Scotland UK;4.Beijing Key Lab of New Energy Vehicle Powertrain Technology,Beijing Jiaotong University,Beijing 100044,China
ZHANG Zhen1,2,3,WANG Feng-shan1,2,CAI Kun1,2,MAO Xiao-fang1,2,YANG Shang-feng1,2,YU Yu-song4. Analysis and Improvement of Thermal Conductive Characteristics of Bipropellant 25N Thruster in Pulse Working Mode[J]. Journal of Propulsion Technology, 2020, 41(1): 92-100.
[1] 汪凤山, 毛晓芳, 虞育松, 等. 双组元离心式喷注器雾化性能的大涡模拟数值研究[J]. 空间控制技术与应用, 2012, 38(6): 13-17.
[2] 张 榛, 虞育松, 侯凌云, 等. 喷雾液滴与涂层壁面作用的机理性试验及其影响研究[J]. 推进技术, 2019, 40(7): 1562-1569.
[3] Fu Pengfei, Hou Lingyun, Ren Zhuyin, et al. A Droplet/Wall Impact Model and Simulation of a Bipropellant Rocket Engine[J]. Aerospace Science and Technology, 2019, 88(5): 32-39.
[4] 曹 顺, 陈 健, 汪凤山. 双组元推力器喷注角度对液膜分布的影响分析[J]. 空间控制技术与应用, 2012, 38(6): 45-49.
[5] 丁佳伟, 李国岫, 虞育松. 结构参数对双组元推力器喷注器雾化性能影响规律的数值模拟研究[J]. 载人航天, 2015, 6: 635-641.
[6] Gotzig U, Schulte G, Sowa A. New Generation 10N Bipropellant MMH/NTO Thruster with Double Seat Valve[R]. AIAA 99-2594.
[7] 屠善澄. 卫星姿态动力学与控制[M]. 北京:宇航出版社, 2001.
[8] Schulte Georg, Gotzigü Ulrich, Horch Alois, et al. Further Improvements and Qualification Status of Astrium’s 10N Bipropellant Thruster Family[R]. AIAA 2003-4776.
[9] Bai C X, Rusche H, Gosman A D. Modeling of Gasoline Spray Impingement[J]. Atomization & Sprays, 2002, 12(1-3): 1-28.
[10] Bai C. Development of Methodology for Spray Impingement Simulation[J]. SAE International Journal of Engines, 1995, 104(3): 550-568.
[11] Melvin G R, Lin S B. Abriebsbest?ndiger Silicon-überzug für Dichtungsstreifen[P]. Germany: DE19608057, 1996-09.
[12] 张 榛, 虞育松, 符鹏飞, 等. 推进剂喷雾液滴与涂层燃烧室壁面作用的机理性试验研究[C]. 洛阳:中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议, 2018.
[13] 王春海. 基于CLSVOF方法的单液滴碰壁铺展过程的模拟研究[D]. 北京: 北京交通大学, 2011.
[14] Bernardin J D, Stebbins C J, Mudawar I. Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface[J]. International Journal of Heat and Mass Transfer, 1997, 40(2): 247-267.
[15] Yao S C, Cai K Y. The Dynamics and Leidenfrost Temperature of Drops Impacting on a Hot Surface at Small Angles[J]. Experimental Thermal and Fluid Science, 1988, 1(4): 363-371.
[16] Bernardin J D, Mudawar I. The Leidenfrost Point: Experimental Study and Assessment of Existing Models[J]. Heat Transfer, 1999, 121(4): 894-903.
[17] Mudawar I, Bernardin J D. A Leidenfrost Point Model for Impinging Droplets and Sprays[J]. Heat Transfer, 2004, 126(2): 272-278.
[18] Baumeister K J, Simon F F. Leidenfrost Temperature: Its Correlation for Liquid Metals, Cryogens, Hydrocarbons, and Water[J]. Heat Transfer, 1973, 95(2): 166-173.