Acceleration Performance Recovery Control for Degradation Aero-Engine
Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China
SHAN Rui-bin1, LI Qiu-hong1, PANG Shu-wei1, NI Bo1. Acceleration Performance Recovery Control for Degradation Aero-Engine[J]. Journal of Propulsion Technology, 2020, 41(5): 1152-1158.
[1] Tahana M, Tsoutsanisb E, Muhammad M, et al. Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review[J]. Applied Energy, 2017, 198: 122-144.
[2] 李睿超, 郭迎清. 涡扇发动机性能退化缓解控制与推力设定[J]. 航空发动机, 2015, 41(2): 12-16.
[3] May R D, Lemon K A, Csank J T, et al. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft[R]. AIAA 2011-6307.
[4] 郑前钢, 张海波, 叶志锋, 等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11): 2801-2808.
[5] 苗浩洁, 王 曦, 杨舒柏. 基于相似参数的加速供油规律反设计方法研究[J]. 推进技术, 2019, 40(1):20-27.
[6] 黄 浏, 殷 锴, 杨文博, 等. 基于N-dot的涡扇发动机加速控制器设计[J]. 航空发动机, 2017, 43(5): 26-30.
[7] 姬晓东. 基于ADRC的航空发动机过渡态控制研究[D]. 大连:大连理工大学, 2017.
[8] Richter H. Multiple Sliding Modes with Override Logic: Limit Management in Aircraft Engine Controls[J]. Journal of Guidance Control and Dynamics, 2012, 35(4): 1132-1142.
[9] Litt J S, Frederick D K, Guo T H. The Case for Intelligent Propulsion Control for Fast Engine Response[R]. AIAA 2009-1876.
[10] Litt J S, Guo T H. Fast Thrust Response for Improved Flight/Engine Control under Emergency Conditions[R]. AIAA 2008-6503.
[11] Csank J T, Connolly J W. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture[R]. NASA-TM—2016-219073.
[12] Csank J T, May R, Guo T H, et al. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine[R]. AIAA 2011-5972.
[13] Vroemen B G, Essen H A, Steenhoven A A, et al. Nonlinear Model Predictive Control of a Laboratory Gas Turbine Installation[J]. Journal of Engineering for Gas Turbines & Power, 1999, 121(4): 629-634.
[14] Brunell B J, Bitmead R R, Connolly A J. Nonlinear Model Predictive Control of an Aircraft Gas Turbine Engine[C]. Las Vegas: Proceedings of the 41st IEEE Conference on Decision and Control , 2002.
[15] Saluru D C, Yedavalli R K. Fault Tolerant Model Predictive Control of a Turbofan Engine Using C-MAPSS40k[C]. Grapevine: The 51st AIAA Aerospace Sciences Meeting, 2012.
[16] 姚文荣, 孙健国. 涡轴发动机非线性模型预测控制[J]. 航空学报, 2008, 29(4): 776-780.
[17] 王健康, 张海波, 黄向华, 等. 基于直升机/涡轴发动机综合仿真平台的发动机非线性模型预测控制[J]. 航空学报, 2012, 33(3): 402-411.
[18] 杜 宪. 滑模与预测控制在航空发动机限制管理中应用研究[D]. 西安:西北工业大学, 2016.
[19] 杜 宪, 郭迎清, 陈小磊. 基于非线性模型预测控制方法的航空发动机约束管理[J]. 航空动力学报, 2015, 30(7): 1766-1771.
[20] 孙健国, 李秋红, 杨 刚, 等. 航空燃气涡轮发动机控制[M]. 上海:上海交通大学出版社, 2014.
[21] Richter H. Advanced Control of Turbine Engines[M]. New York: Springer, 2012: 210-215.
[22] Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.
[23] Litt J S, Parker K I, Chatterjee S. Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging[R]. NASA-TM—2003-212607.