SONG Fu1, ZHOU Li1, WANG Zhan-xue1, ZHANG Ming-yang1, ZHANG Xiao-bo1. Application of Different Zooming Strategies in Aero-Engine Simulation[J]. Journal of Propulsion Technology, 2020, 41(5): 974-983.
[1] Claus R W, Lavelle T, Townsend S, et al. Variable Fidelity Analysis of Complete Engine Systems[R]. AIAA 2007-5042.
[2] Nichols L D, Chamis C C. Numerical Propulsion System Simulation: an Interdisciplinary Approach[R]. AIAA 91-3554.
[3] Claus R W, Evans A L, Lylte J K, et al. Numerical Propulsion System Simulation[J]. Computing Systems in Engineering, 1991, 2(4): 357-364.
[4] Lytel J, Follen G, Naiman C, et al. 2001 Numerical Propulsion System Simulation Review[R]. NASA/TM-2002-211197.
[5] Bala A. Poly-Dimensional Gas Turbine System Modelling and Simulation[D]. Bedfordshire: Cranfield University, 2007.
[6] Alexiou A, Tsalavoutas T. Introduction to Gas Turbine Modelling with PROOSIS[M]. Madrid: Empresarios Agrupados Internacional (EAI), 2011.
[7] Lytle J K. Multi-Fidelity Simulations of Air Breathing Propulsion Systems[R]. AIAA 2006-4967.
[8] Lytle J K. The Numerical Propulsion System Simulation: an Overview[R]. NASA/TM-2000-209915.
[9] Charles L. An Overview of Three Approaches to Multidisciplinary Aeropropulsion Simulation[R]. NASA/TM-1997-107443.
[10] Evans A L, Follen C, Naiman C, et al. Numerical Propulsion System’s National Cycle Program[R]. AIAA 98-3113.
[11] Alexiou A, Baalbergen E H, Koggenhop O, et al. Advanced Capabilities for Gas Turbine Engine Performance Simulation[R]. ASME GT 2007-27086.
[12] Follen G, Aubuchon M. Numerical Zooming Between a NPSS Engine System Simulation and a One-Dimensional High Compressor Analysis Code[R]. NASA/TM-2000-209913.
[13] Reitenbach S, Schnos M, Becker R G, et al. Optimization of Compressor Variable Geometry Settings Using Multi-Fidelity Simulation[R]. ASME GT 2015-42832.
[14] Allison D, Alyanak E. Development of Installed Propulsion Performance Model for High-Performance Aircraft Conceptual Design[R]. AIAA 2014-2725.
[15] Sampath R, Irani R, Balasubramaniam M, et al. High Fidelity System Simulation of Aerospace Vehicles Using NPSS[R]. AIAA 2004-371.
[16] Melloni L, Kotsiopoutlos P, Jackson A, et al. Military Engine Response to Compressor Inlet Stratified Pressure Distortion by an Integrated CFD Analysis[R]. ASME GT 2006-90805.
[17] Connolly J W, Kopasakis G. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model[R]. AIAA 2014-3678.
[18] 叶 纬. 混合维数航空发动机总体性能计算程序构架初步研究[D]. 西安:西北工业大学, 2007.
[19] Shi J W, Wang Z X, Zhang X B, et al. Performance Estimation for Fluidic Thrust Vectoring Nozzle Coupled with Aero-Engine[R]. AIAA 2014-3771.
[20] 谢业平, 尚守堂, 李建榕, 等. 基于安装性能的航空发动机中间状态喷管调节计划优化[J]. 航空动力学报, 2014, 29(1): 175-180.
[21] 周乐仪. 航空发动机燃烧室数值缩放技术研究[D]. 北京:北京航空航天大学, 2008.
[22] Tang H L, Chen M, Jin D H, et al. High Altitude Low Reynolds Number Effect on the Matching Performance of a Turbofan Engine[J]. Proceedings of Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2013, 227(3): 455-466.
[23] 李 燕. 基于0D_2D耦合的涡扇发动机总体性能计算与分析[D]. 南京:南京航空航天大学, 2018.
[24] 王占学, 宋 甫, 周 莉, 等. 航空发动机数值缩放技术的研究进展[J]. 推进技术, 2018, 39(7): 1441-1454.
[25] Joachim K. How to Get Component Maps for Aircraft Gas Turbine Performance Calculations[R]. ASME 96-GT-164.
[26] Freeman C, Cumpsty N A. Method for the Prediction of Supersonic Compressor Blade Performance[J]. Journal of Propulsion and Power, 1992, 8(1): 199-208.
[27] Sullivan T J, Parker D E. Design Study and Performance Analysis of a High-Speed Mulistage Variable-Geometry Fan for a Variable Cycle Engine[R]. NASA/CR-159545, 2014.
[28] Johnsen I A, Bullock R O. Aerodynamic Design of Axial-Flow Compressors[R]. NACA-RM-E56B03A, 1965.
[29] Aungier R. Axial-Flow Compressor - a Strategy for Aerodynamic Design and Analysis[M]. New York: ASME Press, 2003.
[30] 祝启鹏, 高丽敏, 李瑞宇, 等. 跨声速多级轴流压气机特性预估及分析[J]. 推进技术, 2014, 35(10): 1342-1348.
[31] 巫骁雄, 刘 波, 唐天全. 流线曲率法在多级跨声速轴流压气机特性预测中的应用[J]. 推进技术, 2017, 38(10): 2235-2245. (WU Xiao-xiong, LIU Bo, TANG Tian-quan. Application of Streamline Curvature Method for Multistage Transonic Axial Compressor Performance Prediction[J]. Journal of Propulsion Technology, 2017, 38(10): 2235-2245.)
[32] Cetin M, Uecer A S, Hirsch C, et al. Application of Modified Loss and Deviation Correlations to Transonic Axial Compressors[R]. AGARD-R-745, 1987.
[33] Boyer K M. An Improved Streamline Curvature Approach for Off-Design Analysis of Transonic Compression Systems[D]. Virginia: Virginia Polytechnic Institute and State University, 2001.
[34] Koch C C, Smith L H. Loss Sources and Magnitudes in Axial-Flow Compressors[J]. Journal of Engineering for Power, 1976, 98(3): 411-424.