Characterization and Experimental Verification of Transverse Tensile Stress Concentration Coefficient in SiC/TC4 Composites
Key Laboratory of Advanced Measurement and Test Technique for Aviation Propulsion System,Liaoning Province, School of Aero-Engine,Shenyang Aerospace University,Shenyang110136,China
SHA Yun-dong1, JIANG Zhuo-qun1, LUO Li1, AI Si-ze1, LUAN Xiao-chi1. Characterization and Experimental Verification of Transverse Tensile Stress Concentration Coefficient in SiC/TC4 Composites[J]. Journal of Propulsion Technology, 2020, 41(5): 1185-1192.
[1] 梁春华. 连续纤维增强的金属基复合材料部件在航空涡扇发动机上的应用[J]. 航空制造技术, 2009, 15(10): 32-35.
[2] 王玉敏, 张国兴, 张 旭, 等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52(10):1153-1170.
[3] Aghdam M M, Pavier M J, Smith D J. Micro-Mechanics of Off-Axis Loading of Metal Matrix Composites Using Finite Element Analysis[J]. International Journal of Solids & Structures, 2001, 38(22): 3905-3925.
[4] Hu S. The Transverse Failure of a Single-Fiber Metal-Matrix Composite: Experiment and Modeling[J]. Composites Science and Technology, 1996, 56(6): 667-676.
[5] Akser E O, Choy K L. Finite Element Analysis of the Stress Distribution in a Thermally and Transversely Loaded Ti-6Al-4V/SiC Fiber Composite[J]. Composites Part A, 2001, 32(2): 243-251.
[6] Zahl D B, Schmauder , S.Transverse Strength of Continuous Fiber Metal Matrix Composites[J]. Computational Materials Science, 1994, 3(2): 293-299.
[7] 赵 冰, 姜 波, 高志勇, 等. 连续SiC纤维增强钛基复合材料横向强度分析[J]. 稀有金属, 2013, 37(3): 372-377.
[8] Soden P D, Hinton M J, Kaddour A S. Lamina Properties, Lay-Up Configurations and Loading Conditions for a Range of Fiber-Reinforced Composite Laminates[J]. Composites Science and Technology, 1998, 58(7):1011-1022.
[9] 周 熠, 黄争鸣. 考虑含界面裂纹应力集中系数的复合材料强度计算[J]. 航空工程进展, 2017, (2).
[10] 雷友锋, 魏德明, 高德平. 细观力学有限元法预测复合材料宏观有效弹性模量[J]. 燃气涡轮试验与研究, 2003, 16(3): 11-15.
[11] 黄争鸣. 根据原始纤维和基体性能预报复合材料破坏与强度[C]. 西安:中国力学学会、西安交通大学2013年中国力学大会, 2013.
[12] 刘文博, 张洪涛, 王荣国, 等. 用有限元法对CF/PPEK热塑性复合材料等效模量计算[J]. 哈尔滨工业大学学报, 2006, 38(4): 535-537.
[13] Sun C T, Vaidya R S. Prediction of Composite Properties from a Representative Volume Element [J]. Composites Science and Technology, 1996, 56(2): 171-179.
[14] Hori M, Nemat Nasser S. On Two Micromechanics Theories for Determining Micro-Macro Relations in Heterogeneous Solids[J]. Mechanics of Materials, 1999, 31(10): 667-682.
[15] Hollister S J, Kikuchi N. A Comparison of Homogenization and Standard Mechanics Analysis for Periodic Porous Composites[J]. Computational Mechanics, 1992, 10(2): 73-95.
[16] Xia Z, Chen Y, Ellyin F. A Meso/Micro-Mechanical Model for Damage Progression in Glass Fiber/Epoxy Cross-Ply Laminates by Finite-Element Analysis[J]. Composites Science and Technology, 2000, 60(8): 1171-1179.
[17] 张 超, 许希武, 严 雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7): 1636-1645.
[18] Tang X, Whitcomb J D. General Techniques for Exploiting Periodicity and Symmetries in Micromechanics Analysis of Textile Composites[J]. Journal of Composite Materials, 2003, 37(13): 1167-1189.
[19] 李 庆, 杨晓翔. 基于周期性边界条件的炭黑填充橡胶复合材料力学行为的预测[J]. 复合材料学报, 2013, 30(6): 159-167.
[20] Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 155(1-2): 181-192.
[21] Suquet P. Elements of Homogenization Theory for Inelastic Solid Mechanics[C]. Berlin: Homogenization Techniques for Composite Media, 1987: 194-275.
[22] 沙云东, 丁光耀, 田建光, 等. 纤维增强复合材料力学性能预测及试验验证[J]. 航空动力学报, 2018, 33(10): 2324-2332.
[23] Kaddour A, Hinton M. Input Data for Test Cases Used in Benchmarking Triaxial Failure Theories of Composites[J]. Journal of Composite Materials, 2012, 46(19-20):2295-2312.
[24] Kaddour A, Hinton M, Smith P, et al. Mechanical Properties and Details of Composite Laminates for the Test Cases Used in the Third World-Wide Failure Exercise[J]. Journal of Composite Materials, 2013, 47(20-21):2427-2442.