Journal of Propulsion Technology ›› 2014, Vol. 35 ›› Issue (4): 537-543.

Previous Articles     Next Articles

Numerical Simulation on Flow and Heat Transfer of n-Decane Under Supercritical Pressure

  

  1. School of Power and Energy, Northwestern Polytechnical University, Xi′an 710072, China;School of Power and Energy, Northwestern Polytechnical University, Xi′an 710072, China;Science and Technology Laboratory on Scramjet, China Aerodynamics Research and Development Center,Mianyang 621000, China;Science and Technology Laboratory on Scramjet, China Aerodynamics Research and Development Center,Mianyang 621000, China
  • Published:2021-08-15

超临界压力下正十烷流动传热的数值模拟

赵国柱1,宋文艳1,张若凌2,乐嘉陵2   

  1. 西北工业大学 动力与能源学院,陕西 西安 710072;西北工业大学 动力与能源学院,陕西 西安 710072;中国空气动力研究与发展中心 高超声速冲压发动机技术重点实验室,四川 绵阳 621000;中国空气动力研究与发展中心 高超声速冲压发动机技术重点实验室,四川 绵阳 621000
  • 作者简介:赵国柱(1982—),男,博士生,研究领域为超燃冲压发动机热防护。E-mail:dfer-long@163.com

Abstract: In order to understand the heat transfer characteristic of hydrocarbon under supercritical pressure in regenerative cooling process, a numerical method was established based on SIMPLE algorithm. The method can model the drastic variations of hydrocarbon thermophysical properties with temperature. The results of an electrically heated tube test were adopted to verify the method. A systemic numerical investigation was then conducted to study the flow and heat transfer phenomena of n-decane under supercritical pressure in a tube. Grid independence and the pressure effects on supercritical flow and heat transfer were analyzed in detail. The results show that the state of n-decane has a great effect on grid selection. Nusselt number decreases with decreasing pressure in the vicinity of critical temperature under supercritical pressure. Thus the efficiency of heat transfer declines. There are obvious differences between the results of empirical expressions and that of numerical prediction due to the drastic variations of thermophysical properties near the critical region. 

Key words: Supercritical pressure; n-decane; Regenerative cooling; Numerical simulation

摘要: 为了深入理解主动再生冷却过程中碳氢燃料的超临界传热特性,基于SIMPLE算法建立了数值模拟方法,考虑了碳氢燃料物性随温度的剧烈变化,并利用电加热管实验结果验证了计算方法。针对超临界压力下细管道内正十烷的流动传热现象进行了系统的数值计算研究,考察了计算网格无关性和超临界流动传热过程中的压力效应。结果表明:网格选择与正十烷的状态有关;在超临界压力下,较低的正十烷压力引起临界温度附近的努赛尔数减小,导致传热效率下降;目前常用的传热经验公式在正十烷临界区域附近与数值计算结果差别较大。 

关键词: 超临界压力;正十烷;再生冷却;数值模拟 