Journal of Propulsion Technology ›› 2015, Vol. 36 ›› Issue (1): 1-8.

• System •     Next Articles

Experimental Investigation of Distributed Flame Transfer Function for Non-Premixed Flame

  

  1. Key Laboratory for Thermal Science and Power Engineering/Department of Thermal Engineering,Tsinghua University, Beijing 100084,China,Beijing Institute of Control Engineering,Beijing 100190,China,Science and Technology on Scramjet Laboratory,Beijing Power Machinery Institute,Beijing 100074,China and Key Laboratory for Thermal Science and Power Engineering/Department of Thermal Engineering,Tsinghua University, Beijing 100084,China
  • Published:2021-08-15

分布式非预混火焰传递函数的实验研究

景李玥1,姚兆普2,王 辽3,朱 民1   

  1. 清华大学 热能工程系/热科学与动力工程教育部重点实验室,北京 100084,北京控制工程研究所,北京 100190,北京动力机械研究所 高超声速冲压发动机技术重点实验室,北京 100074,清华大学 热能工程系/热科学与动力工程教育部重点实验室,北京 100084
  • 作者简介:景李玥(1989-),男,博士生,研究领域为非预混火焰燃烧不稳定。
  • 基金资助:
    国家自然科学基金(51376107);高超声速冲压发动机技术重点实验室基金(L13178)。

Abstract: Combustors with non-premixed flames are widely used in propulsion and power systems. To predict and control the combustion oscillation,it is crucial to understand the flame dynamics,which can be described by the flame transfer function. The one-dimensional distributed flame transfer function for a methane-air coflow non-premixed flame was investigated experimentally. The two-microphone technique and [CH*] chemiluminescence intensity measurement were used to determine the inlet-velocity perturbation and heat release oscillation,which are the input and output to the flame transfer function. A Cassegrain optical system was used to improve the spatial resolution so that the local,temporal intensity of chemiluminescence can be measured,therefore the one-dimensional distributed flame transfer function. The results show that in the frequency domain,the amplitude of the distributed flame transfer function has two peaks,and the angle of the distributed flame transfer function has a nearly[π]shift through between two peaks. This is caused by the hot spots propagating downstream across the flame surface.

Key words: Combustion oscillation;Instability of non-premixed flame;The distributed flame transfer function;Cassegrain optical system

摘要: 非预混燃烧是动力设备和推进系统中常见的燃烧组织形式。为了理解非预混火焰的动力学特性、预测和控制其振荡燃烧现象,有必要获得其火焰传递函数。本文通过实验测量对分布式非预混火焰的传递函数进行了研究,实验对象为甲烷空气同心射流火焰。实验中使用双麦克风技术测量燃烧室出口速度脉动,作为传递函数的输入量;使用CH基自发荧光测量燃烧过程的放热率脉动,作为传递函数的输出量。搭建了卡塞格林光学测量系统,以提升放热率测量的空间分辨率,实现单点测量,进而得到一维分布式火焰传递函数。结果表明,在频域内,实验中测得的传递函数的幅值沿火焰轴向存在两个峰值,在幅值的峰谷处相位角有[180°]翻转,这是热斑以对流速度向下游传播,跨越火焰面时所造成的。

关键词: 燃烧振荡;非预混火焰不稳定性;分布式火焰传递函数;卡塞格林光学测量系统