Journal of Propulsion Technology ›› 2016, Vol. 37 ›› Issue (1): 34-39.

Previous Articles     Next Articles

Numerical Analysis and Experimental Validation of Critical Sealing Characteristics of Rim Seal

  

  1. Nanjing University of Aeronautics and Astronautics,Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing 210016,China,Nanjing University of Aeronautics and Astronautics,Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing 210016,China and Nanjing University of Aeronautics and Astronautics,Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing 210016,China
  • Published:2021-08-15

一种盘缘篦齿临界特性的数值分析和试验验证

董伟林,王锁芳,夏子龙   

  1. 南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室,江苏 南京 210016,南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室,江苏 南京 210016,南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室,江苏 南京 210016
  • 作者简介:董伟林,男,硕士生,研究领域为动力机械传热与燃烧。

Abstract: The internal flow field of rim seal in critical condition(maximum Mach number=1) were analyzed and the effects of rotation on the critical sealing characteristics of rim seal were studied by using a combination of numerical method and experimental validation. The results show that comparing the SST turbulence model with the experimental results,the maximum difference is 4.4% with the pressure ratio between the upstream and downstream increased from 2.23 to 2.36. The numerical results are in good agreement with experimental data. The critical section does not always locate in the smallest cross of the rim seal structure,it is closely related with the shape of the rim seal. When the pressure ratio between the upstream and downstream of the rim seal beyond the critical value([p*inp*out]=2.28),the rim seal leakage coefficient will still increase. With the Taylor number increased from 6.25×103 to 3.75×104,the rim seal leakage decreased as the speed of rotation increased,because the rotating boundary layer become thicker.

Key words: Aircraft engine;Rim seal;Critical characteristics;Leakage coefficient

摘要: 采用数值模拟和试验相结合的方法,分析了临界(最大马赫数为1)工况下篦齿齿腔的内部流场,研究了旋转效应对盘缘篦齿临界特性的影响。结果表明:当进出口总压比由2.23增至2.36,SST湍流模型与试验结果最大误差为4.4%,较为准确地模拟了试验状态;临界流动截面并不一定位于真实结构最小截面处,其所处位置与篦齿齿腔形状密切相关;进出口总压比超过临界压比([p*inp*out]=2.28)后,篦齿泄漏系数仍会有所增加;当泰勒数由6.25×103增至3.75×104,旋转效应使得附面层增厚,篦齿泄漏系数减小。

关键词: 航空发动机;盘缘篦齿;临界特性;泄漏系数