Journal of Propulsion Technology ›› 2016, Vol. 37 ›› Issue (2): 346-353.

• Structure, Strength and Reliablity • Previous Articles     Next Articles

Study on a Semi-Physical Method for Modeling Overall Vibration of an Aero-Engine

  

  1. College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China,College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China and Shenyang Engine Design and Research Institute,Aviation Industry Corporation of China,Shenyang 110015,China
  • Published:2021-08-15

航空发动机整机振动半实物建模方法研究

赵 斌1,陈 果1,冯国全2   

  1. 南京航空航天大学 民航学院,江苏 南京 211106,南京航空航天大学 民航学院,江苏 南京 211106,中国航空工业集团公司 沈阳发动机设计研究所,辽宁 沈阳 110015
  • 作者简介:赵 斌,男,硕士生,研究领域为结构振动与强度。
  • 基金资助:
    南京航空航天大学青年科技创新基金(NS2013070)。

Abstract: In order to study a modeling method to analyze the overall aero-engine vibration problem more quickly and precisely and precisely,a semi-physical modeling method which combines testing and simulation modeling method together is used. The casing-support testing data is set into rotor finite element model during the modeling procedure. The overall vibration semi-physical modeling principle,casing-support structure transfer function testing and synthesized modeling method are studied. An aero-engine rotor tester is used to validate the semi-physical modeling method. The rotor tester overall and semi-physical simulation model are built to calculate the casing vibration responses. The rotor tester is disassembled to test the casing-support frequency response function which is synthesized with the rotor finite element model. The overall aero-engine tester semi-physical model based on testing data is built to calculate the overall aero-engine frequency response function. The results show that semi-physical modeling method can not only maintain the calculation accuracy,but also reduce more than 90% of the computation time. The semi-physical model can obtain the overall aero-engine frequency response function fast and precisely,and the nature frequency calculation error is less than 2%.

Key words: Substructure method;Rotor dynamics;Finite element method;Modal analysis;Testing technology

摘要: 为了研究一种快速准确地分析航空发动机整机振动的建模方法,采用试验与仿真结合,在转子模型中综合机匣-支承试验数据的半实物建模方法,对整机振动半实物建模原理,机匣-支承传递函数测试、结构综合建模等问题进行了研究,运用航空发动机转子试验器对半实物建模方法进行验证。建立试验器整机及半实物仿真模型,计算机匣振动响应;拆装转子试验器,测试机匣-支承连接位置频率响应函数,综合转子有限元模型,建立基于试验数据的试验器半实物模型,计算整机频率响应函数。结果表明,半实物建模方法能够在保证计算精度的前提下缩减90%以上的计算时间,运用半实物模型能够准确地获得整机频率响应函数,固有频率计算误差在2%以内。

关键词: 子结构方法;转子动力学;有限元方法;模态分析;测试技术