Journal of Propulsion Technology ›› 2017, Vol. 38 ›› Issue (2): 399-407.

Previous Articles     Next Articles

Analysis of Rotating Cooling Effects with Oil for Turbine Blade

  

  1. School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China,School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China,School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China,School of Mechatronics,Northwestern Polytechnical University,Xi’an 710072,China and School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
  • Published:2021-08-15

油冷涡轮动叶方案中旋转冷却效应分析

秦 江1,孙红闯1,白新阳1,谢公南2,韩杰才3   

  1. 哈尔滨工业大学 能源科学与工程学院,黑龙江 哈尔滨 150001,哈尔滨工业大学 能源科学与工程学院,黑龙江 哈尔滨 150001,哈尔滨工业大学 能源科学与工程学院,黑龙江 哈尔滨 150001,西北工业大学 机电学院,陕西 西安 710072,哈尔滨工业大学 航天学院,黑龙江 哈尔滨 150001
  • 作者简介:秦 江,男,博士,副教授(博士生导师),研究领域为发动机主动热防护、能量管理。
  • 基金资助:
    面上项目(51476044;51276047);国家自然科学基金(51421063)。

Abstract: The air turbine can be used to solve the problems of fuel and power supply for Scramjet. The main obstacle is the cooling measure of turbine blades under limited cooling source. In this article,a new scheme was proposed to cool the blades with fuel used as coolant. Based on this oil cooling scheme,a three dimensional model was established to evaluate the feasibility and study heat transfer under rotation by numerical simulation. The results show that oil cooling scheme can efficiently reduce the temperature of blade with few negative effects on the performance of turbine. The temperature of blade can decrease greatly with the fuel mass flow rate of 1g/s. The maximum pressure of the coolant in the cooling channel can reach 114.5MPa in the rotating condition. Rotation effect enhances the turbulence intensity in the cooling channel and strengthens heat convection between the blade and fuel.

Key words: Turbine blade;Fuel cooling;Rotating cooling;Numerical simulation

摘要: 空气涡轮技术可用于超燃冲压发动机,解决燃料和电力供给问题,其面临的主要障碍是冷源受限条件下涡轮动叶的冷却措施。提出了一种用燃料作为冷却剂的油冷方案,对涡轮动叶进行冷却。针对该方案,建立了三维模型并通过数值模拟方法评估该方案的可行性,并研究了旋转条件下的流动换热问题。结果表明:油冷方案可以在基本不影响涡轮性能的基础上有效降低动叶温度;单个叶片用1g/s流量的燃料就能使叶片的温度大幅降低;高速转动下,冷却通道中压力最高可达114.5MPa;旋转效应增强了冷却通道中流动的湍流度,提高了冷却剂与叶片之间的对流换热系数。

关键词: 涡轮动叶;燃料冷却;旋转冷却;数值模拟