Journal of Propulsion Technology ›› 2018, Vol. 39 ›› Issue (2): 380-387.

Previous Articles     Next Articles

Thermomechanical Analysis of a Regeneratively-Cooled Thrust Chamber with Thermal Barrier Coatings

  

  1. School of Astronautics,Beihang University,Beijing 100191,China,School of Astronautics,Beihang University,Beijing 100191,China and School of Astronautics,Beihang University,Beijing 100191,China
  • Published:2021-08-15

再生冷却推力室热障涂层系统的热结构分析

邢昱阳,孙 冰,宋佳文   

  1. 北京航空航天大学 宇航学院,北京 100191,北京航空航天大学 宇航学院,北京 100191,北京航空航天大学 宇航学院,北京 100191
  • 作者简介:邢昱阳,男,硕士生,研究领域为液体火箭发动机热防护。E-mail: xyy6786@buaa.edu.cn 通讯作者:孙 冰,女,博士,教授,博士生导师,研究领域为火箭发动机热防护。

Abstract: To design and optimize the thermal barrier coating (TBC) for LRE thrust chamber, finite element analysis of TBC system in regeneratively-cooled thrust chamber is carried out, by the thermomechanical analysis function in ANSYS. The temperature and strain fields of different coatings are computed. Based on the strain fields, dangerous regions and driving forces leading to failure in TBC are determined. The results show that YSZ coatings with a thick ceramic layer and a NiCrAlY bond layer provide better protection, making the maximum strain in thrust chamber wall 36.1% lower in hot test. The failure position of TBC is located at the interface of coating and thrust chamber wall. Bond layer mitigates the mismatched thermal expansion coefficient between coating and thrust chamber wall, making the maximum strain in ceramic layer 80% lower in hot test.

Key words: Liquid rocket engine;Thrust chamber;Regenerative cooling;Thermal barrier coating;Finite element method;Temperature field;Strain filed

摘要: 为了设计和优化适用于液体火箭发动机推力室的热障涂层,应用ANSYS的热-结构分析功能,对再生冷却推力室-热障涂层系统进行了热结构有限元分析,得到在不同涂层覆盖下,推力室壁中的温度场和应变场,并通过对热障涂层中应变场的分析,研究不同涂层发生分层剥落的关键位置以及主要驱动力。结果表明,陶瓷层厚度较大的YSZ+NiCrAlY涂层拥有更优异的性能,使推力室壁在热试阶段的最大应变量减少约36.1%;工作循环中,涂层与推力室壁的接触面上会产生较大的应变量,最终有可能导致涂层剥落失效;粘结层能缓解涂层与推力室壁间的热膨胀系数不匹配,使陶瓷层在热试阶段的最大应变量减少约80%。

关键词: 液体火箭发动机;推力室;再生冷却;热障涂层;有限元法;温度场;应变场