Experimental Researches on Unburnt Flow Field Performance of a Single-Cavity Trapped Vortex Combustor with Different Width of Radial Strut
Jiangsu Province Key Laboratory of Aerospace Power Systems,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
ZHU Yi-xiao1,HE Xiao-min1,JIN Yi1. Experimental Researches on Unburnt Flow Field Performance of a Single-Cavity Trapped Vortex Combustor with Different Width of Radial Strut[J]. Journal of Propulsion Technology, 2019, 40(10): 2296-2312.
[1] Roquemore W M, Shouse D, Burrus D, et al. Trapped Vortex Combustor Concept for Gas Turbine Engines[R]. AIAA2001-0483.
[2] Ezhil Kumar P K, Mishra D P. Numerical Simulation of Cavity Flow Structure in an Axisymmetric Trapped Vortex Combustor[J]. Aerospace Science and Technology, 2012, 21(1): 16-23.
[3] Ezhil Kumar P K, Mishra D P. Combustion Noise Characteristics of an Experimental 2D Trapped Vortex Combustor[J]. Aerospace Science and Technology, 2015, 43: 388-394.
[4] Ezhil Kumar P K, Kumar P, Mishra D P. Experimental Investigation on the Performance Characteristics of a 2D Trapped Vortex Combustor[J]. Journal of Aerospace Engineering, 2016, 230(10): 1840-1847.
[5] Ezhil Kumar P K, Mishra D P. Flame Stability Characteristics of Two-Dimensional Trapped Vortex Combustor[J]. Combustion Science and Technology, 2016, 188(8):1283-1302.
[6] Ezhil Kumar P K, Mishra D P. Combustion Characteristics of a Two-Dimensional Twin Cavity Trapped Vortex Combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(7): 1-10.
[7] Ezhil Kumar P K, Mishra D P. Numerical Study of Reacting Flow Characteristics of a 2D Twin Cavity Trapped Vortex Combustor[J]. Combustion Theory and Modelling, 2017, 21(4): 658-676.
[8] 吴泽俊, 何小民, 洪 亮, 等. 采用离心喷嘴的单凹腔驻涡燃烧室点火与贫熄特性[J]. 推进技术, 2015, 36(4): 601-607.
[9] 金 义. 高油气比驻涡燃烧室流动与燃烧性能研究, [D]. 南京:南京航空航天大学, 2013.
[10] Jin Y, He X M, Jiang B, et al. Effect of Cavity-Injector/Radial-Strut Relative Position on Performance of a Trapped Vortex Combustor[J]. Aerospace Science and Technology, 2014, 32(1): 10-18.
[11] Jin Y, He X M, Zhang J Y, et al. Numerical Investigation on Flow Structures of a Laboratory-Scale Trapped Vortex Combustor[J]. Applied Thermal Engineering, 2014, 66(s1-2: 318-327.
[12] Jin Y, Li Y F, He X M, et al. Experimental Investigations on Flow Field and Combustion Characteristics of a Model Trapped Vortex Combustor[J]. Applied Energy, 2014, 134: 257-269.
[13] Agarwal K K, Ravikrishna R V. Experimental and Numerical Studies in a Compact Trapped Vortex Combustor: Stability Assessment and Augmentation[J]. Combustion Science and Technology, 2011; 183(12): 1308-1327.
[14] Agarwal K K, Krishna S, Ravikrishna R V. Mixing Enhancement in a Compact Trapped Vortex Combustor[J]. Combustion Science and Technology, 2013, 185(3): 363-378.
[15] Li M Y, He X M, Zhao Y L, et al. Effect of Strut Length on Combustion Performance of a Trapped Vortex Combustor[J]. Aerospace Science and Technology, 2018, 76:204-216.
[16] Wu Z J, Jin Y, He X M, et al. Experimental and Numerical Studies on a Trapped Vortex Combustor with Different Struts Width[J]. Applied Thermal Engineering, 2015, 91: 91-104.
[17] 何小民, 许金生, 苏俊卿. 驻涡区进口结构参数影响TVC燃烧性能的试验[J]. 航空动力学报, 2007, 22(11): 1798-1802.
[18] 何小民, 张净玉. 驻涡燃烧室燃烧组织方式和设计思路分析[J]. 航空科学技术, 2008, (2): 26-29.
[19] 何小民, 许金生, 苏俊卿. 驻涡燃烧室燃烧性能试验[J]. 航空动力学报, 2009, 24(2): 318-323.
[20] 金 义, 何小民, 蒋 波. 富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验[J]. 航空动力学报, 2011, 26(5): 1031-1036.
[21] Jin Y, He X M, Zhang J Y, et al. Experimental Study on Emission Performance of an LPP/TVC[J]. Chinese Journal of Aeronautics, 2012, 25(3): 335-341.
[22] Jin Y, He X M, Jiang B, et al. Design and Performance of an Improved Trapped Vortex Combustor[J]. Chinese Journal of Aeronautics, 2012, 25(6): 864-870.