Research on Damaged Constitutive Model for HTPB Composite Base Bleed Grain
1.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;2.Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang 621999,China;3.Product Research and Development Center of Liaoshen Industries Group Co. Ltd.,Shenyang 110045,China
WU Zhi-hui1,NIU Gong-jie2,HAO Yu-feng3,QIAN Jian-ping1,LIU Rong-zhong1. Research on Damaged Constitutive Model for HTPB Composite Base Bleed Grain[J]. Journal of Propulsion Technology, 2019, 40(12): 2853-2860.
[1] Kakavas P A. Mechanical Properties of Propellant Composite Materials Reinforced with Ammonium Perchlorate Particles[J]. International Journal of Solids and Structures, 2014, 51(10): 2019-2026.
[2] 刘志林, 王晓鸣, 姚文进, 等. 底排药的高应变率动态响应实验和仿真[J]. 含能材料, 2014, 22(4): 529-534.
[3] Yang Long, Xie Kan, Pei Jiang-feng, et al. Compressive Mechanical Properties of HTPB Propellant at Low, Intermediate and High Strain Rates[J]. Journal of Applied Polymer Science, 2016, 133(23).
[4] 杨 龙, 谢 侃, 裴江峰, 等. HTPB推进剂拉伸力学行为的应变速率相关超弹本构模型[J]. 推进技术, 2017, 38(3): 687-694.
[5] Xu Jinsheng, Chen Xiong, Wang Hongli, et al. Thermo-Damage-Viscoelastic Constitutive Model of HTPB Composite Propellant[J]. International Journal of Solids and Sturctures, 2014, 51(18): 3209-3217.
[6] Schapery R A. A Theory of Crack Initiation and Growth in Viscoelastic Media, Part I: Theoretical Development[J]. International Journal of Fracture, 1975, 11(1):141-159.
[7] 张晓军, 常新龙, 赖建伟, 等. HTPB推进剂低温拉伸/压缩力学性能对比[J]. 固体火箭技术, 2013, 36(6):771-774.
[8] 孙朝翔. 宽泛应变率和温度下改性双基推进剂本构模型及应用研究[D]. 南京:南京理工大学, 2017.
[9] 王鸿丽, 许进升, 刘宗魁, 等. 复合改性双基推进剂黏弹性-黏塑性-黏损伤本构模型研究[J]. 兵工学报, 2018, 39(7): 1308-1315.
[10] 韩 龙. 复合固体推进剂细观损伤机理及本构模型研究[D]. 南京:南京理工大学, 2016.
[11] 肖有才. PBX炸药的动态力学性能和冲击损伤行为研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
[12] 傅 政. 高分子材料强度及破坏行为[M]. 北京:化学工业出版社, 2005.
[13] Duncan E J S, Margetson J. A Nonlinear Viscoelastic Theory for Solid Rocket Propellants Based on a Cumulative Damage Approach[J]. Propellants, Explosives, Pyrotechnics, 1998, 23(2): 94-104.
[14] Jean Lemaitre . A Continuous Damage Mechanics Model for Ductile Fracture[J]. Journal of Engineering and Technology, 1985, 107(1): 83-89.
[15] 王友善, 王 锋, 王 浩. 超弹性本构模型在轮胎有限元分析中的应用[J]. 轮胎工业, 2009, 29(5): 277-282.
[16] 王礼立. 应力波基础[M]. 北京:国防工业出版社, 2010.
[17] Khajehsaeid H, Arghavani J, Naghdabadi R, et al. A Visco-Hyperelastic Constitutive Model for Rubber-Like Materials: A Rate-Dependent Relaxation Time Sheme [J]. International Journal of Engineering Science, 2014, 79(6): 44-58.
[18] Guo Hui, Guo Weiguo, Amirkhizi Alireza V. Constitutive Modeling of the Tensile and Compressive Deformation Behavior of Polyurea over a Wide Range of Strain Rates[J]. Construction and Building Materials, 2017, 150: 851-859.
[19] Wang Jun, Xu Yingjie, Zhang Weihong, et al. A Damage-Based Elastic-Viscoplastic Constitutive Model for Amorphous Glassy Polycarbonate Polymers [J]. Materials and Design, 2016, 97: 519-531.
[20] 胡少青. NEPE推进剂的粘-超弹本构模型及其应用研究[D]. 南京:南京理工大学, 2015.