A Fault Diagnosis Method of Airborne Fuel Pump Based on Granulation and Fuzzy Entropy
1.College of Coastal Defense,Naval Aviation University,Yantai 264000,China;2.College of Basic Sciences for Aviation,Naval Aviation University,Yantai 264000,China;3.College of Mathematics and Statistics,Ludong University,Yantai 264000,China;4.Naval 92728,shanghai 200040,China
DAI Shao-wu1, CHEN Qiang-qiang1,4, DAI Hong-de2, LI Juan3. A Fault Diagnosis Method of Airborne Fuel Pump Based on Granulation and Fuzzy Entropy[J]. Journal of Propulsion Technology, 2020, 41(10): 2308-2315.
[1] 刘晓东, 景 博, 石 慧, 等. 燃油泵故障诊断试验装置及试验方案优化设计[J]. 振动.测试与诊断, 2017, 37(6): 1187-1194.
[2] 丁 锋, 栗 祥, 韩 帅. EEMD与NRS在涡桨发动机转子故障诊断中的应用[J]. 航空动力学报, 2018, 33(6): 1423-1431.
[3] 焦晓璇, 景 博, 羌晓清, 等. 机载燃油泵故障诊断及实验平台研究[J]. 振动与冲击, 2017, 36(1): 120-128.
[4] Logan D, Mathew J. Using the Correlation Dimension for Vibration Fault Diagnosis of Rolling Element Bearings [J]. Mechanical Systems & Signal Processing, 1996, 10(3): 241-250.
[5] 李晓娟, 曲建岭, 邹文栋, 等. 航空发动机状态参数的关联维数分析[J]. 计算机仿真, 2013, 30(9): 56-59.
[6] Muralidharan V, Sugumaran V. Rough Set Based Rule Learning and Fuzzy Classification of Wavelet Features for Fault Diagnosis of Monoblock Centrifugal Pump[J]. Measurement, 2013, 46(9): 3057-3063.
[7] 林近山, 窦春红, 张 妮. 基于多重分形去趋势互相关分析的齿轮箱故障诊断[J]. 机械传动, 2016, 40(1): 91-94.
[8] 李 兵, 张培林, 任国全, 等. 形态学广义分形维数在发动机故障诊断中的应用[J]. 振动与冲击, 2011, 30(10): 208-211.
[9] 王 冰, 李洪儒, 陈强华, 等. 基于数学形态分形维数与模糊C均值聚类的滚动轴承退化状态识别[J]. 兵工学报, 2015, 36(10): 1982-1990.
[10] 侯荣涛, 闻邦椿, 周 飙. 基于现代非线性理论的汽轮发电机组故障诊断技术研究[J]. 机械工程学报,2005, 41(2): 142-147.
[11] 胡春燕, 刘新灵, 李 莹. 某发动机主燃油泵轴承失效分析[J]. 金属热处理, 2011, 36(9): 64-67.
[12] Pincus S M. Approximate Entropy as a Measure of System Complexity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6): 2297-2301.
[13] Yan R, Gao R X. Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 824-839.
[14] Chen W, Wang Z, Xie H, et al. Characterization of Surface EMG Signal Based on Fuzzy Entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266-272.
[15] 王付广. 基于ELM的滚动轴承退化趋势与剩余寿命预测方法研究[D]. 马鞍山:安徽工业大学, 2018.
[16] 戴洪德, 陈强强, 戴邵武, 等. 基于平滑先验分析和排列熵的滚动轴承故障诊断[J]. 推进技术, 2020, 41(8).
[17] 郑近德, 姜战伟, 代俊习, 等. 基于VMD的自适应复合多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 航空动力学报, 2017, 32(7): 1683-1689.
[18] Zadeh L A. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic[J]. Fuzzy Sets and Systems, 1997, 90(2): 111-127.
[19] 陈强强, 戴邵武, 戴洪德, 等. 基于分解-粒化和优化极限学习机的燃油泵性能退化趋势预测[J]. 推进技术, 2020, 41(8).
[20] 郑近德, 程军圣, 杨 宇. 基于LCD和排列熵的滚动轴承故障诊断[J]. 振动.测试与诊断, 2014, 34(5): 802-806.
[21] 郑近德, 陈敏均, 程军圣, 等. 多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 振动工程学报, 2014, 27(1): 145-151.
[22] Wu S, Wu P, Wu C, et al. Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine[J]. Entropy, 2012, 14(8): 1343-1356.
[23] Garcíagonzalo E, Fernándezmartínez J L. A Brief Historical Review of Particle Swarm Optimization (PSO)[J]. Journal of Bioinformatics & Intelligent Control, 2012, 1(1): 3-16.
[24] Smith W A, Randall R B. Rolling Element Bearing Diagnostics Using the Case Western Reserve University Data: a Benchmark Study[J]. Mechanical Systems and Signal Processing, 2015, 64-65: 100-131.