Computational Models Based on Analysis of Three Dimensional Flow Field Structures in Rotating Detonation
1.Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China;2.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China;3.School of Aerospace Engineering,Xiamen University,Xiamen 361102,China
LIU Peng-xin1,2, GUO Qi-long1,2, ZHAO Wei1, LI Chen1,2, LI Qin3, ZHANG Han-xin1,2. Computational Models Based on Analysis of Three Dimensional Flow Field Structures in Rotating Detonation[J]. Journal of Propulsion Technology, 2020, 41(12): 2757-2765.
[1] Wolanski Piotr. Detonation Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34: 125-158.
[2] Frank K Lu, Braun Eric M. Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts[J]. Journal of Propulsion and Power, 2014, 30(5): 1125-1142.
[3] Bykovskii F A, Zhdan S A. Current Status of Research of Continuous Detonation in Fuel-Air Mixtures (Review) [J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 21-35.
[4] Kailasanath K. Recent Developments in the Research on Rotating Detonation Wave Engines[R]. AIAA 2017-0784.
[5] Zhou Rui, Wu Dan, Wang Jian-ping. Progress of Continuously Rotating Detonation Engines[J]. Chinese Journal of Aeronautics, 2016, 29(1): 15-29.
[6] 刘世杰, 刘卫东, 林志勇, 等. 连续旋转爆震波传播过程研究(I):同向传播模式[J]. 推进技术, 2014, 35(1): 138-144.
[7] 刘世杰, 刘卫东, 林志勇, 等. 连续旋转爆震波传播过程研究(II):双波对撞传播模式[J]. 推进技术, 2014, 35(2): 269-275.
[8] Zhang Li-feng, Zhang Shu-jie, Wang Jian-ping. A Direct Simulation of Continuous Detonation Engine with the Naiver-Stokes Equations[R]. AIAA 2017-2323.
[9] Frolov S M, Dubrovskii A V, Ivanov V S. Three Dimensional Numerical Simulation of the Operation of the Rotating Detonation Chamber[J]. Combustion, Explosion and Shock Waves, 2012, 31(3): 32-45.
[10] Frolov S M, Dubrovskii A V, Ivanov V S. Three Dimensional Numerical Simulation of the Operation of a Rotating Detonation Chamber with Separate Supply of Fuel and Oxidizer[J]. Combustion, Explosion and Shock Waves, 2013, 32(2): 56-65.
[11] Strakey P A, Ferguson D, Sisler A, et al. Computationally Quantifying Loss Mechanisms in a Rotating Detonation Engine[R]. AIAA 2016-0900.
[12] Cocks P A, Holley A T, Greene C B, et al. Development of a High Fidelity RDE Simulation Capability[R]. AIAA 2015-1823.
[13] Cocks P A, Holley A T, Rankin B A, et al. High Fidelity Simulations of a Non-Premixed Rotating Detonation Engine[R]. AIAA 2016-0125.
[14] Gaillard T, Davidenko D, Dupoirieux F. Numerical Simulation of a Rotating Detonation with a Realistic Injector Designed for Separate Supply of Gaseous Hydrogen and Oxygen[J]. Acta Astronautica, 2017, 141: 64-78.
[15] 刘朋欣, 李 沁, 张涵信. 初始点火条件引起的三维旋转爆震波单/双波传播模式[J]. 气体物理, 2018, 3(1): 20-27.
[16] Li Qin, Liu Peng-xin, Zhang Han-xin. Further Investigations on the Interface Instability between Fresh Injections and Burnt Products in 2-D Rotating Detonation[J]. Computers and Fluids, 2018, 170: 261-272.
[17] Liu Pengxin, Li Qin, Huang Zhangfeng, et al. Interpretation of Wake Instability at Slip Line in Rotating Detonation[J]. International Journal of Computational Fluid Dynamics, 2018, 32(8-9): 379-394.
[18] Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[19] Shur M L, Spalart P R, Strelets M K, et al. A Hybrid RANS-LES Model with Delayed DES and Wall-Modeled LES Capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29: 1638-1649.
[20] Evans J S, Schexnayder C J. Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames[J]. AIAA Journal, 1980, 18(2): 188-193.
[21] Jiang G S, Shu C W. Efficient Implementation of Weighted ENO Schemes[J]. Journal of Computational Physics, 1996, 126: 202-28.
[22] Li Qin, Liu Peng-xin, Zhang Han-xin. Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution[J]. Communications in Computational Physics, 2015, 18(5): 1417-1444.
[23] Pan Z H, Fan B C. Wavelet Pattern and Self-Sustained Mechanism of Gaseous Detonation Rotating in a Coaxial Cylinder[J]. Combustion and Flame, 2011, 158: 2220-2228.