Thermal Cycle Analysis of Turboprop with Ceramic Matrix Composite Based on Multiple Design Points Approach
1.AEEC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China;2.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
ZHENG Hua-lei1, SU Zhi-min1,2, HUANG Xing1, LI Yang1. Thermal Cycle Analysis of Turboprop with Ceramic Matrix Composite Based on Multiple Design Points Approach[J]. Journal of Propulsion Technology, 2021, 42(1): 1-9.
[1] 王逸维, 黄向华. 拉力式对转桨扇发动机的建模与性能评估[J]. 推进技术, 2018, 39(2): 241-250.
[2] Verrilli M, Calomino A, Robinson R C. Ceramic Matrix Composite Vane Subelement Testing in a Gas Turbine Environment[R]. ASME GT 2004-53970.
[3] Vedula V, Shi J, Jarmon D, et al. Ceramic Matrix Composite Turbine Vanes for Gas Turbine Engines[R]. ASME GT 2005-68229.
[4] Brewer D N, Verrilli M, Calomino A, et al. Ceramic Matrix Composite Vane Subelement Burst Testing[R]. ASME GT 2006-90883.
[5] Boyle R J, Parikh A H, Halbig M C, et al. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications[R]. ASME GT 2013-95104.
[6] Boyle R J, Parikh A H. Design Concepts for Cooled Ceramic Composite Turbine Vane[R]. NASA/CR-2015-218390.
[7] 韩 笑, 高希光, 宋迎东. 基于单向陶瓷基复合材料拉伸曲线的细观力学参数识别[J]. 推进技术, 2018, 39(9): 2121-2126.
[8] 胡殿印, 曾雨琪, 张 龙. 二维编织SiC/SiC 陶瓷基复合材料宏观弹性常数预测及模态试验研究[J]. 推进技术, 2018, 39(2): 465-472.
[9] 杨丛橙, 高希光, 于国强, 等. 循环载荷对单向CMCs 应变分布均匀性的影响[J]. 推进技术, 2018, 39(11): 2601-2607.
[10] Schutte J. Simultaneous Multi-Design Point Approach to Gas Turbine On-Design Cycle Analysis for Aircraft Engines[D]. Georgia:Georgia Institute of Technology, 2009.
[11] Schutte J, Tai J C M, Sands J, et al. Cycle Design Exploration Using Multi-Design Point Approach[R]. ASME GT 2012-69334.
[12] Schutte J, Tai J C M. Multi-Design Point Cycle Design Incorporation into the Environmental Design Space[R]. AIAA 2012-3812.
[13] 郑华雷, 王召广, 蔡建兵, 等. 航空发动机多设计点热力循环分析方法的构建及应用[J]. 燃气涡轮试验与研究, 2019, 32(5): 8-14.
[14] Snyder A C, Thur-man D R. Gas Turbine Characteristics for a Large Civil Tilt-Rotor(LCTR)[R]. NASA/TM-2010-216089.
[15] Schneider S J. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations[R]. NASA/TM-2015-218738.
[16] Hartsel J E. Prediction of Effects of Mass-Trasfer Cooling on the Blade-Row Efficiency[R]. AIAA 72-0011.
[17] Laing P, Mansour A, Hannifin P, et al. A Low NOx Lean-Direct Injection, Multipoint Integrated Module Combustor Concept for Advanced Aircraft Gas Turbines[R]. NASA/TM-2002-211347.
[18] Harth S, Zarzalis N, Bauer H T, et al. Evaluation of a Piloted Lean Injection System in Terms of Emission Performance and Flame Structure at Elevated Pressure[R]. ASME GT 2013-94371.
[19] 林左鸣. 世界航空发动机手册[M]. 北京: 中航出版传媒有限责任公司, 2012.
[20] 方昌德. 世界航空发动机手册[M]. 北京: 航空工业出版社, 1996.
[21] 世界中小型航空发动机手册编委会. 世界中小型航空发动机手册[M]. 北京: 航空工业出版社, 2006.