WU Xiao-xiong, LIU Bo, CHEN Zi-jing. Application of Surrogate Models for Through-Flow Calculation in an Axial-Flow Compressor[J]. Journal of Propulsion Technology, 2021, 42(1): 123-138.
[1] Denton J D, Hirsch C. Throughflow Calculations in Axial Turbomachines[R]. AGARD AR-175.
[2] Cetin M, Uecer A, Hirsch C, et al. Application of Modified Loss and Deviation Correlations to Transonic Axial Compressors[R]. AGARD-R-745.
[3] K?nig W M, Hennecke D K, Fottner L. Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings, Part I: A Model for Subsonic Flow[J]. Journal of Turbomachinery, 1996, 118(1): 73-80.
[4] K?nig W M, Hennecke D K, Fottner L. Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings, Part II: a Model for Supersonic Flow[J]. Journal of Turbomachinery, 1996, 118(1): 81-87.
[5] Gallimore S. Spanwise Mixing in Multistage Axial Flow Compressors, Part II: Throughflow Calculations Including Mixing[J]. Journal of Turbomachinery, 1986, 108(1): 10-16.
[6] Schmitz A, Aulich M, Nicke E. Novel Approach for Loss and Flow-Turning Prediction Using Optimized Surrogate Models in Two-Dimensional Compressor Design[R]. . ASME GT 2011-45086.
[7] Drela M, Youngren H. A User’s Guide to MISES 2.53[R]. Massachusetts Institute of Technology, Cambridge, MA 1998.
[8] Schmitz A, Aulich M, Sch?nweitz D, et al. Novel Performance Prediction of a Transonic 4.5 Stage Compressor[R]. ASME GT 2012-69003.
[9] Kou J, Zhang W. A Hybrid Reduced-Order Framework for Complex Aeroelastic Simulations[J]. Aerospace Science and Technology, 2019, 84: 880-894.
[10] Jin Y, Li S, Jung O. Prediction of Flow Properties on Turbine Vane Airfoil Surface from 3D Geometry with Convolutional Neural Network[R]. ASME GT 2019-90811.
[11] Joly M, Sarkar S, Mehta D. Machine Learning Enabled Adaptive Optimization of a Transonic Compressor Rotor with Precompression[J]. Journal of Turbomachinery, 2019, 141(5).
[12] Messenger H, Kennedy E. Two-Stage Fan I: Aerodynamic and Mechanical Design[R]. NASA-CR-120859.
[13] Ruggeri R S, Benser W A. Performance of a Highly Loaded Two Stage Axial-Flow Fan[R]. NASA-TM-X-3076.
[14] Morris M D. Factorial Sampling Plans for Preliminary Computational Experiments[J]. Technometrics, 1991, 33(2): 161-174.
[15] Campolongo F, Cariboni J, Saltelli A. An Effective Screening Design for Sensitivity Analysis of Large Models[J]. Environmental Modelling & Software, 2007, 22(10): 1509-1518.
[16] Forrester A, Sobester A, Keane A. Engineering Design via Surrogate Modelling: a Practical Guide[M]. Manhattan: John Wiley & Sons, 2008.
[17] Bergstra J, Bengio Y. Random Search for Hyper-Parameter Optimization[J]. Journal of Machine Learning Research, 2012, 13: 281-305.
[18] Bergstra J, Yamins D, Cox D D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures[C]. Proc. 30th International Conference on Machine Learning(ICML-13), 2013.
[19] Bergstra J S, Bardenet R, Bengio Y, et al. Algorithms for Hyper-Parameter Optimization[C]. Advances in Neural Information Processing Systems, 2011.
[20] Hutter F. Automated Configuration of Algorithms for Solving Hard Computational Problems[D]. Vancouver, University of British Columbia, 2009.
[21] Hutter F, Hoos H H, Leyton-Brown K. Sequential Model-Based Optimization for General Algorithm Configuration[C]. Berlin: International Conference on Learning and Intelligent Optimization, 2011.
[22] Jones D R. A Taxonomy of Global Optimization Methods Based on Response Surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383.
[23] Cortes C, Vapnik V. Support-Vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.
[24] Hsu C W, Chang C C, Lin C J. A Practical Guide to Support Vector Classification[D]. Taipei: National Taiwan University, 2003.
[25] Smola A J, Sch?lkopf B. A Tutorial on Support Vector Regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
[26] Drucker H, Burges C J C, Kaufman L, et al. Support Vector Regression Machines[C]. Denver: Advances in neural Information Processing Systems, 1997.
[27] Platt J C. Using Analytic QP and Sparseness to Speed Training of Support Vector Machines[C]. Cambridge: Advances in Neural Information Processing Systems, 1999.
[28] Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection[C]. Montreal: International Joint Conference on Artificial Intelligence, 1995.
[29] Rasmussen C E. Gaussian Processes in Machine Learning[C]. Berlin: Springer, 2003.
[30] Wu C H. A General Though-Flow Theory of Fluid Flow with Subsonic or Supersonic Velocity in Turbomachines of Arbitrary Hub and Casing Shapes[R]. NACA-TN-2302.
[31] Wu C H. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial, and Mixed-Flow Types[R]. NACA-TN-2604.
[32] Novak R. Streamline Curvature Computing Procedures for Fluid-Flow Problems[J]. Journal of Engineering for Gas Turbines and Power, 1967, 89(4): 478-490.
[33] 巫骁雄, 刘 波, 唐天全. 流线曲率法在多级跨声速轴流压气机特性预测中的应用[J]. 推进技术, 2017, 38(10): 2235-2245.
[34] Carter A D S. The Low Speed Performance of Related Aerofoils in Cascades[M]. London: HM Stationery Office, 1950.
[35] Creveling H F, Carmody R H. Axial-Flow Compressor Computer Program for Calculating Off-Design Performance[R]. NASA CR-72472.
[36] Pachidis V. Gas Turbine Advanced Performance Simulation[D]. Cranfield: Cranfield University, 2006.
[37] Koch C, Smith L. Loss Sources and Magnitudes in Axial-Flow Compressors[J]. Journal of Engineering for Gas Turbines and Power, 1976, 98(3): 411-424.
[38] Boyer K M, O’Brien W F. An Improved Streamline Curvature Approach for Off-Design Analysis of Transonic Axial Compression Systems[J]. Journal of Turbomachinery, 2003, 125(3): 475-481.
[39] Tiwari P, Stein A, Lin Y L. Dual-Solution and Choked Flow Treatment in a Streamline Curvature Throughflow Solver[J]. Journal of Turbomachinery, 2013, 135(4).
[40] 杨 晨, 吴 虎, 杨金广, 等. 基于时间推进的涡扇发动机整机通流数值模拟[J]. 推进技术, 2019, 40(10): 2190-2197.