YE Zhi-xian, FANG Yuan-qi, ZOU Jian-feng, WANG Gao-feng, SHI Xing, ZHENG Yao. Synthetic Jet Actuator PIV Experiments and Modal Analysis[J]. Journal of Propulsion Technology, 2021, 42(2): 258-271.
[1] Kral L D. Active Flow Control Technology[J]. ASME Fluids Engineering Technical Brief, 2001, (11): 1-28.
[2] Louis C N, Mark S. Actuators for Active Flow Control[J]. Annual Review of Fluid Mechanics, 2011, 43: 247-272.
[3] Smith B L, Glezer A. The Formation and Evolution of Synthetic Jets[J]. Physics of Fluids, 1998, 10(9): 2281-2297.
[4] Glezer A, Amitay M. Synthetic Jets[J]. Annual Review of Fluid Mechanics, 2002, 34(1): 503-529.
[5] Schaeffler N. The Interaction of a Synthetic Jet and a Turbulent Boundary Layer[C]. Reno: 41st Aerospace Sciences Meeting and Exhibit, 2003.
[6] Amitay M, Smith D R, Kibens V, et al. Aerodynamic Flow Control Over an Unconventional Airfoil Using Synthetic Jet Actuators[J]. AIAA Journal, 2001, 39(3): 361-370.
[7] Amitay M, Glezer A. Aerodynamic Flow Control Using Synthetic Jet Actuators[M]. Berlin: Springer, 2006.
[8] Smith B L, Glezer A. Jet Vectoring Using Synthetic Jets[J]. Journal of Fluid Mechanics, 2002, 458: 1-34.
[9] Wang H, Menon S. Fuel-Air Mixing Enhancement by Synthetic Microjets[J]. AIAA Journal, 2001, 39(12): 2308-2319.
[10] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, (2): 221-234.
[11] 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(E辑:技术科学), 2008, (3): 321-349.
[12] 顾蕴松, 明 晓. 应用PIV技术研究“零质量”射流的非定常流场特性[J]. 实验流体力学, 2005, (1): 83-86.
[13] 顾蕴松, 李斌斌, 程克明. 斜出口合成射流激励器横流输运特性与边界层控制[J]. 航空学报, 2010, 31(2): 231-237.
[14] 王 林, 刘 冰, 夏智勋, 等. 不同出口倾角合成双射流流动特性及边界层控制[J]. 推进技术, 2010, 31(6): 757-763.
[15] 秦 勇, 刘华坪, 王若玉, 等. 激励参数对合成射流控制压气机流动分离的影响[J]. 推进技术, 2017, 38(5): 1030-1037.
[16] 李 念, 张堃元, 徐惊雷. 自耦合射流对平行主射流的矢量偏转实验研究[J]. 推进技术, 2005, 26(3): 248-251.
[17] 赵 宏, 杨治国, 娄慧娟. 合成射流流动特性实验研究及在燃烧中的应用探讨[J]. 航空动力学报, 2004,(4): 512-519.
[18] Lumley J L. Stochastic Tools in Turbulence[M]. New York: Courier Corporation, 2007.
[19] Sirovich L. Turbulence and the Dynamics of Coherent Structures.I. Coherent Structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571.
[20] Rowley C W. Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition[J]. International Journal of Bifurcation and Chaos, 2005, 15(3): 997-1013.
[21] Sieber M, Paschereit C O, Oberleithner K. Spectral Proper Orthogonal Decomposition[J]. Journal of Fluid Mechanics, 2016, 792(7): 798-828.
[22] Towne A, Schmidt O T, Colonius T. Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis[J]. Journal of Fluid Mechanics, 2018, 847: 821-867.
[23] 谢 龙, 靳思宇, 王玉璋, 等. 阀体后90°圆形弯管内部流场PIV测量及POD分析[J]. 实验流体力学, 2012, (3): 21-25.
[24] 温 谦, 沙 江, 刘应征. 淹没射流湍流场的TR-PIV测量及流场结构演变的POD分析[J]. 实验流体力学, 2014, 28(4): 16-24.
[25] Schmid P J. Dynamic Mode Decomposition of Numerical and Experimental Data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28.
[26] Rowley C W, Mezi? I, Bagheri S, et al. Spectral Analysis of Nonlinear Flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127.
[27] Tu J H, Rowley C W, Luchtenburg D M, et al. On Dynamic Mode Decomposition: Theory and Applications[J]. Journal of Computational Dynamics, 2014, 1(2).
[28] Hyhlík T, Net?ebská H, Devera J, et al. Analysis of Turbulent Synthetic Jet by Dynamic Mode Decomposition[C]. Marianske Lazne: European Physical Journal Web of Conference, 2017.
[29] 潘 翀, 王晋军. 复杂流场的动力学模态分解[C]. 广州: 第八届全国实验流体力学学术会议, 2012.
[30] 王建明, 王 涵, 桂 琳. 压气机叶栅叶顶间隙流的动力学模态分解[J]. 推进技术, 2018, 39(3): 520-527.
[31] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9): 2679-2689.
[32] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179.
[33] Sieber M, Paschereit C O, Oberleithner K. Spectral Proper Orthogonal Decomposition[J]. Journal of Fluid Mechanics, 2016, 792: 798-828.
[34] Wynn A, Pearson D S, Ganapathisubramani B, et al. Optimal Mode Decomposition for Unsteady Flows[J]. Journal of Fluid Mechanics, 2013, 733: 473-503.
[35] Williams M O, Kevrekidis I G, Rowley C W. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition[J]. Journal of Nonlinear Science, 2015, 25(6): 1307-1346.
[36] Thielicke W, Stamhuis E. PIVlab-Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB[J]. Journal of Open Research Software, 2014, 2(1).
[37] Thielicke W, Stamhuis E J. PIVlab-Time-Resolved Particle Image Velocimetry Tool for Digital MATLAB[J]. Published under the BSD License, Programmed with MATLAB, 2014, (7): 1-4.
[38] Thielicke W. The Flapping Flight of Birds: Analysis and Application[M]. Groningen: University of Groningen, 2014.
[39] Garcia D. A Fast All-In-One Method for Automated Post-Processing of PIV Data[J]. Experiments in Fluids, 2011, 50(5): 1247-1259.
[40] Penland C, Magorian T. Prediction of Nino 3 Sea Surface Temperatures Using Linear Inverse Modeling[J]. Journal of Climate, 1993, 6(6): 1067-1076.
[41] Kwasniok F. The Reduction of Complex Dynamical Systems Using Principal Interaction Patterns[J]. Physica D: Nonlinear Phenomena, 1996, 92(1-2): 28-60.