Experimental Investigation of Solid Rocket Scramjet Combustor with Cavity Flameholder
Science and Technology on Scramjet Laboratory,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073, China
MA Li-kun, LI Chao-long, XIA Zhi-xun, ZHAO Xiang. Experimental Investigation of Solid Rocket Scramjet Combustor with Cavity Flameholder[J]. Journal of Propulsion Technology, 2021, 42(2): 319-326.
[1] Curran Edward T. Scramjet Engines: The First Forty Years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148.
[2] Waltrup P J, White M E, Zarlingo F. History of US Navy Ramjet, Scramjet, and Mixed-Cycle Propulsion Development[J]. Journal of Propulsion and Power, 2002, 18(1): 14-27.
[3] 王振国, 梁剑寒, 丁 猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739.
[4] 俞 刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5): 449-472.
[5] Witt Micheal A. Investigation into the Feasibility of Using Solid Fuel Ramjets for High Supersonic/Low Hypersonic Tactical Missiles[D]. Monterey: Naval Postgraduate School, 1989.
[6] Angus William J. An Investigation into the Performance Characteristics of a Solid Fuel Scramjet Propulsion Device[D]. Monterey: Naval Postgraduate School, 1991.
[7] Adela Ben-Yakar, Gany Alon. Experimental Study of a Solid Fuel Scramjet[R]. AIAA 94-2815.
[8] Adela Ben-Yakar, Natan Benveniste, Gany Alon. Investigation of a Solid Fuel Scramjet Combustor[J]. Journal of Propulsion and Power, 1998, 14(4): 447-455.
[9] Xinyan Pei, Zhiwen Wu, Zhijun Wei, et al. Numerical Investigation on Internal Regressing Shapes of Solid-Fuel Scramjet Combustor[J]. Journal of Propulsion and Power, 2013, 29(5): 1041-1051.
[10] 王利和, 武志文, 迟鸿伟, 等. 不同台阶高度下固体燃料超燃冲压发动机燃烧室初始型面变化规律[J]. 推进技术, 2013, 34(11): 1493-1498.
[11] 王利和, 武志文, 迟鸿伟, 等. 固体燃料超燃冲压发动机燃烧室流场准一维计算方法研究[J]. 固体火箭技术, 2013, 36(6): 742-747.
[12] Lihe Wang, Zhiwen Wu, Hongwei Chi. Numerical and Experimental Study on the Solid-Fuel Scramjet Combustor[J]. Journal of Propulsion and Power, 2014, 31(2): 685-693.
[13] 迟鸿伟, 魏志军, 王利和, 等. 固体燃料超燃冲压发动机燃烧室中PMMA自点火性能数值研究[J]. 推进技术, 2014, 35(6): 799-808.
[14] 陶 欢, 魏志军, 迟鸿伟, 等. 等直段直径对固体燃料超燃冲压发动机燃烧室性能的影响[J]. 推进技术, 2015, 36(6): 884-892.
[15] 刘伟凯, 陈林泉, 杨向明. 固体燃料超燃冲压发动机燃烧室掺混燃烧数值研究[J]. 固体火箭技术, 2012, 35(4): 457-462.
[16] Zhong Lv, Zhixun Xia, Bin Liu, et al. Experimental and Numerical Investigation of a Solid-Fuel Rocket Scramjet Combustor[J]. Journal of Propulsion and Power, 2016, 32(2): 273-278.
[17] Zhong Lv, Zhixun Xia, Bing Liu, et al. Preliminary Experimental Study on Solid-Fuel Rocket Scramjet Combustor[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(2): 106-112.
[18] 吕 仲. 固体火箭超燃冲压发动机理论与试验研究[D]. 长沙:国防科技大学, 2017.
[19] Yang Liu, Yonggang Gao, Lei Shi, et al. Preliminary Experimental Study on Solid Rocket Fuel Gas Scramjet[J]. Acta Astronautica, 2018, 153: 146-153.
[20] 刘 洋, 高勇刚, 余晓京, 等. 固体火箭燃气超燃冲压发动机概念分析(Ⅰ)——全流道一体化设计[J]. 固体火箭技术, 2018, 41(4): 403-413.
[21] 高勇刚, 刘 洋, 余晓京, 等. 固体火箭燃气超燃冲压发动机燃烧组织技术研究[J]. 推进技术, 2019, 40(1): 140-150.
[22] 徐大军, 蔡国飙. 高超声速飞行器技术[M]. 北京:科学出版社, 2012.
[23] Gordon S, Mcbride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, Part 1: Analysis[M]. Washington DC: NASA Reference Publication, 1994.
[24] Chaolong Li, Zhixun Xia, Likun Ma, et al. Numerical Study on the Solid Fuel Rocket Scramjet Combustor with Cavity[J]. Energies, 2019, 12(7): 1-17.