Mathematical Model of Breakup Characteristics in Dense Air Atomization Flow Field
1.Sino-European Institute of Aviation Engineering,Civil Aviation University of China,Tianjin 300300,China;2.Laboratory of Fluid Mechanics and Acoustics,L’Ecole Centrale de Lyon,Lyon 69131,France
Online:2021-02-02
Published:2021-08-15
密集型空气雾化流场破碎特征数学模型研究
邓甜1,陈伟1,任兴明1,赵可馨1,Gorokhovski M2
1.中国民航大学 中欧航空工程师学院,天津 300300;2.Laboratory of Fluid Mechanics and Acoustics,L’Ecole Centrale de Lyon,Lyon 69131,France
DENG Tian1, CHEN Wei1, REN Xing-ming1, ZHAO Ke-xin1, Gorokhovski M2. Mathematical Model of Breakup Characteristics in Dense Air Atomization Flow Field[J]. Journal of Propulsion Technology, 2021, 42(2): 355-361.
邓甜,陈伟,任兴明,赵可馨,Gorokhovski M. 密集型空气雾化流场破碎特征数学模型研究[J]. 推进技术, 2021, 42(2): 355-361.
[1] Hirt C W, Nichols B D. Volume of Fluid Method for the Dynamics of Free Boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[2] Sethian J A. Level Set Methods and Fast Marching Method[M]. Cambridge: Cambridge University Press, 1999.
[3] Sussman M, Smereka P, Osher S. A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159.
[4] Kim D, Herrmann M, Moin P. The Breakup of a Round Liquid Jet by a Coaxial Flow of Gas Using the Refined Level Set Grid Method[C]. Florida: 59th Annual Meeting of the APS Division of Fluid Dynamics, 2006.
[5] Peskin C S. Numerical Analysis of Blood Flow in the Heart[J]. Journal of Computational Physics, 2015, 25(3): 220-252.
[6] 黄生洪, 徐胜利, 刘小勇. 煤油超燃冲压发动机两相流场数值模拟(I)数值校验及总体流场特征[J]. 推进技术, 2004, 25(6): 484-490.
[7] Deng T, Chen W, Ren X-M, et al. Experiment on the Breakup of Liquid Jets in Different Cross-Airflows[J]. International Journal of Aerospace Engineering, 2019, (7): 1-13.
[8] Saffman P G. On the Boundary Condition at the Surface of Porous Medium[J]. Studies in Applied Mathematics, 1971, 50(2): 93-101.
[9] Joseph D D, Lundgren T S, Jackson R, et al. Ensemble Averaged and Mixture Theory Equations for Incompressible Fluid-Particle Suspensions[J]. International Journal of Multiphase Flow, 1990, 16(1): 35-42.
[10] Lundgren T S. Slow Flow Through Stationary Random Beds and Suspensions of Spheres[J]. Journal of Fluid Mechanics, 1972, 51(2): 273-299.
[11] 王于蓝, 穆 勇, 卢海涛, 等. 涡轮级间燃油雾化特性数值研究[J]. 推进技术, 2019, 40(4): 825-834.
[12] Lele S K. Compact Finite Difference Schemes with Spectral-Like Resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42.
[13] Sornette. Critical Phenomena in Natural Science[M]. Berlin: Springer, 2000.
[14] Rayana F B. Contribution à L'étude Des Instabilités Interfaciales Liquide-Gaz en Atomisation Assistée et Tailles de Gouttes[D]. Grenoble: Institut National Polytechnique de Grenoble, 2007.
[15] Werquin O. Diagnostics de Scalaires Par Plan Laser dans des Jets Diphasiques Denses[D]. Rouen: Energétique Rouen, 2001.
[16] Lasheras J, Villermaux E, Hopfinger E. Break-Up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet[J]. Journal of Fluid Mechanics, 1998, 357: 351-379.
[17] Kolmogorov A N, Levin V, Hunt J C R, et al. Dissipation of Energy in the Locally Isotropic Turbulence[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1991, 434(1): 15-17.
[18] Hong M. Atomisation et Mélange dans Les Jets Coaxiaux Liquide-Gaz[D]. Grenoble: Institut National Polytechnique de Grenoble, 2003.
[19] Carpenter M H, Gottlieb D, Abarbanel S. The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes[J]. Journal of Computational Physics, 1993, 108(2): 272-295.
[20] Thompson K W. Time-Dependent Boundary Conditions for Hyperbolic Systems[J]. Journal of Computational Physics, 1990, 89(2): 439-461.
[21] Giles M B. Nonreflecting Boundary Conditions for Euler Equation Calculations[J]. AIAA Journal, 1990, 28(12): 2050-2058.