Experimental Study on Overall Cooling Effectiveness of Afterburner Double-Wall Heat Shield
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Shaanxi Key Laboratory of Thermal Sciences in Aero-Engine System,Xi’an 710072,China;3.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
NIU Jia-jia1,2, LIU Cun-liang1,2, LIU Hai-yong1,2, XIAO Xiang3, LIN Jian-fu3. Experimental Study on Overall Cooling Effectiveness of Afterburner Double-Wall Heat Shield[J]. Journal of Propulsion Technology, 2021, 42(2): 395-405.
[1] 张孝春, 孙雨超, 刘 涛. 先进加力燃烧室设计技术综述[J]. 航空发动机, 2014, 40(2): 24-30.
[2] 谢 浩, 张靖周. 致密孔阵气膜冷却绝热温比和对流换热系数的数值研究[J]. 航空动力学报, 2009, 24(6): 1229-1235.
[3] 渠立红, 张靖周, 谭晓茗. 发散孔结构参数对横向波纹表面气膜绝热冷却效率的影响[J]. 航空动力学报, 2018, 33(3): 590-596.
[4] 王敏敏, 赵 熙, 林 莉, 等. 纵向波纹隔热屏气膜冷却特性实验[J]. 航空动力学报, 2019, 34(12): 2648-2655.
[5] Jobin T R, Gamble E J, Bachmann J G. Development of a Computer Program for Thermal Analysis of Aircraft Cooling Liners[R]. AIAA 2006-986.
[6] 杨 谦, 林宇震, 张 弛, 等. 发散冷却与冲击/发散冷却的冷却效率对比[J]. 航空动力学报, 2014, 29(2): 268-276.
[7] 杨卫华, 王 立, 宋双文, 等. 冲击发散冷却流场结构PIV测量[J]. 航空动力学报, 2010, 25(3): 483-487.
[8] 许全宏, 林宇震, 刘高恩. 冲击加多斜孔双层壁冷却方式流量系数研究[J]. 推进技术, 2000, 21(5): 49-52.
[9] Hollworth B R, Dagan L. Arrays of Impingement Jets with Spent Fluid Removal Through Vent Holes on the Target Surface-Part 1: Average Heat Transfer[J]. Journal of Engineering for Power, 1980, 102(4): 994-999.
[10] Hollworth B R, Lehmann G, Rosiczkowski J. Arrays of Impingement Jets with Spent Fluid Removal Through Vent Holes on the Target Surface, Part 2: Local Heat Transfer[J]. Journal of Engineering for Power, 1983, 105(2): 393-402.
[11] Cho H H, Rhee D H. Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling System[J]. Journal of Turbomachinery, 2001, 123(3): 601-608.
[12] 王 开, 徐国强, 张纪宁, 等. 冲击与气膜的组合形式对冷却效果的影响[J]. 北京航空航天大学学报, 2008, 34(7): 751-754.
[13] 胡 超, 许全宏, 徐 剑, 等. 冲击/发散冷却壁温分布和冷却效率研究[J]. 航空动力学报, 2008, 23(10): 1800-1804.
[14] 张 勃, 李继保, 吉洪湖, 等. 冲击-多斜孔复合冷却中冲击孔与多斜孔面积比对换热特性的影响[J]. 航空动力学报, 2009, 24(10): 2235-2240.
[15] 李威宏. 燃机透平薄壁叶片冷却结构的对流与耦合传热机制研究[D]. 北京: 清华大学, 2018.
[16] Dees J E, Bogard D G, Ledezma G A, et al. Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane[J]. Journal of Turbomachinery, 2012, 134(6): 467-476.
[17] Jung E Y, Chung H, Choi S M, et al. Conjugate Heat Transfer on Full-Coverage Film Cooling with Array Jet Impingements with Various Biot Numbers[J]. Experimental Thermal and Fluid Science, 2017, 83(83): 1-8.
[18] Xing Y, Spring S, Weigand B. Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets[J]. Journal of Heat Transfer, 2010, 132(9): 092201.1-092201.9.
[19] 渠立红, 张靖周, 谭晓茗. 发散孔横向波纹隔热屏气膜冷却特性研究[J]. 工程热物理学报, 2016, 37(7): 1532-1537.
[20] Nathan M L, Dyson T E, Bogard D G, et al. Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane[J]. Journal of Turbomachinery, 2014, 136(3).
[21] Li M F, Li X Y, Ren J, al et, Overall Cooling Effectiveness Characteristic and Influence Mechanism on an Endwall with Film Cooling and Impingement[R]. ASME GT 2015-43069.
[22] Liu C L, Xie G, Wang R, et al. Study on Analogy Principle of Overall Cooling Effectiveness for Composite Cooling Structures with Impingement and Effusion[J]. International Journal of Heat and Mass Transfer, 2018, 127: 639-650.
[23] Xie G, Liu C L, Niu J J, et al. Experimental Investigation on Analogy Principle of Conjugate Heat Transfer for Effusion/Impingement Cooling[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118919.1-118919.13.
[24] Miller M, Natsui G, Ricklick M, et al. Heat Transfer in a Coupled Impingement-Effusion Cooling System[R]. ASME GT 2014-26416.
[25] Florschuetz L W, Berry R A, Metzger D E. Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air[J]. Journal of Heat Transfer, 1980, 102(1): 132-137.
[26] Moffat R J. Describing the Uncertainties in Experimental Results[J]. Experimental Thermal and Fluid Science, 1988, 1 (1): 3-17.
[27] 牛嘉嘉, 刘存良, 刘海涌, 等. 气膜孔与冲击孔面积比和动量比对加力燃烧室双层壁隔热屏综合冷却效率的影响[J]. 推进技术, 2020, DOI: 10.13675/j.cnki.tjjs.200179.