Effects of Circumferential Spring Force Distribution on Sealing Performance of Circumferential Seal
1.School of Power and Energy Engineering,Beihang University,Beijing 100191,China;2.Institute for Aero-Engine,Beihang University,Beijing 100191,China;3.Beijing Changcheng Institute of Metrology & Measurement,Aviation Industry Corporation of China,Beijing 100095,China
YUN Rui-de1, CHEN Zhi-ying1,2, LIU Yong1, ZHANG Jia-yuan3. Effects of Circumferential Spring Force Distribution on Sealing Performance of Circumferential Seal[J]. Journal of Propulsion Technology, 2021, 42(6): 1361-1371.
[1] 方昌德. 航空发动机的发展前景[J]. 航空发动机, 2004, 30(1): 1-5.
[2] Koop W. The Integrated High Performance Turbine Engine Technology (IHPTET) Program[C]. Chattanooga: 13th ISABE, 1997.
[3] 张宝诚. 航空发动机的现状和发展[J]. 沈阳航空工业学院学报, 2008(3): 6-10.
[4] 《航空发动机设计手册》总编委会编. 航空发动机设计手册: 第12册 传动及润滑系统[M]. 北京: 航空工业出版社, 2002.
[5] Mayhew E, Bill R, Voorhees W. Military Engine Seal Development-Potential for Dual Use[C]. Indianapolis: 30th Joint Propulsion Conference & Exhibit, 1994.
[6] Sturgess G, Datta P. Application of CFD to Gas Turbine Engine Secondary Flow Systems-the Labyrinth Seal[C]. Boston: 24th Joint Propulsion Conference, 2013.
[7] Steinetz B M, Hendricks R C. Engine Seal Technology Requirements to Meet NASA’s Advanced Subsonic Technology Program Goals[J]. Journal of Propulsion and Power, 1996, 12(4): 786-793.
[8] 胡广阳. 航空发动机密封技术应用研究[J]. 航空发动机, 2012, 38(3): 1-4.
[9] Sorokina N E, Redchitz A V, Ionov S G, et al. Different Exfoliated Graphite as a Base of Sealing Materials[J]. Journal of Physics & Chemistry of Solids, 2006, 67(5): 1202-1204.
[10] Song Y Z, Zhai G T, Song J R, et al. Seal and Wear Properties of Graphite from MCMBs/Pitch-Based Carbon/Phenolic-Based Carbon Composites[J]. Carbon, 2006, 44(13): 2793-2796.
[11] Baklanova N I, Zima T M, Boronin A I, et al. Protective Ceramic Multilayer Coatings for Carbon Fibers[J]. Surface & Coatings Technology, 2006, 201(6): 2313-2319.
[12] Ellen R, Mayhew. Air Force Seal Activity[R]. USA: Aero Propulsion & Power Directorate Wright Laboratory, 1994.
[13] Fechter N J, Petrunich P S. Development of Seal Ring Carbon-Graphite Materials[R]. NASA CR-72799.
[14] Oike M, Nosaka M, Watanabe Y, et al. Experimental Study on High-Pressure Gas Seals for a Liquid Oxygen[J]. Tribology Transactions, 1988, 31(1): 91-97
[15] Kikuchi M, Oike M, Nosaka M, et al. Durability of a Carbon Segmented Circumferential Seal for a Liquid Oxygen Turbopump[R]. Tokyo: National Aerospace Laboratory, 1992.
[16] Soltani R, Heydarzadeh S M, Ansari M, et al. Effect of APS Process Parameters on High-Temperature Wear Behavior of Nickel-Graphite Abradable Seal Coatings[J]. Surface & Coatings Technology, 2017, 321: 403-408.
[17] 林基恕, 张振波. 21世纪航空发动机动力传输系统的展望[J]. 航空动力学报, 2001, 16(2): 108-114.
[18] 周序科, 徐红军, 巴力学. 浸银炭石墨复合材料的密封摩擦特性[J]. 新型炭材料, 2001(1): 33-39.
[19] 胡亚非, 王启立, 刘 颀, 等. 石墨密封材料润滑膜形成规律及摩擦磨损研究[J]. 中国矿业大学学报, 2010, 39(2): 223-226.
[20] 闫玉涛, 李雪娟, 胡广阳, 等. 石墨密封材料高温摩擦磨损行为及预测[J]. 航空动力学报, 2014, 29(2): 314-320.
[21] 邵山中. 主轴承腔转子跳动对石墨圆周密封的影响分析[D]. 沈阳: 沈阳航空航天大学, 2016.
[22] 闫玉涛, 张 博, 胡广阳, 等. 石墨圆周密封热-结构耦合分析[J]. 航空动力学报, 2018, 33(2): 273-281.
[23] 胡广阳, 闫玉涛, 郑利胜, 等. 航空发动机石墨圆周密封接触特性分析[J]. 润滑与密封, 2018, 43(11): 102-107.
[24] Bhushan B. Introduction to Tribology[M]. USA: John Wiley & Sons, Inc, 2002.
[25] 刘雨川. 摩擦传热中热流分配系数的确定[C]. 兰州: 第七届全国摩擦学大会, 2002.
[26] 尹延国, 邢大淼, 尤 涛, 等. 基于有限元法的面接触摩擦热流分配系数反推研究[J]. 摩擦学学报, 2012, 32(6): 592-598.
[27] Shaughnessy D, Dobek L. High Misalignment Carbon Seals for the Fan Drive Gear System Technologies[R]. USA: NASA Center for Aerospace Information, 2006.
[28] 盛敬超. 液压流体力学[M]. 北京:机械工业出版社, 1980.
[29] 王 伟, 赵宗坚, 张振生. 单环圆周密封装置设计和应用研究[J]. 航空发动机, 2009, 35(4): 7-11.