LIU Di, SUN Bing, MA Xing-yu. Multi-Cycle Thermo-Structural Analysis of Thrust Chamber for Liquid Oxygen/Methane Engine[J]. Journal of Propulsion Technology, 2021, 42(7): 1615-1627.
[1] 孙得川, 杨建文, 白荣博. 气氧/甲烷涡流冷壁燃烧室流场与壁面耦合传热分析[J]. 推进技术, 2011, 32(3): 401-406.
[2] 刘占一, 刘计武, 汪广旭, 等. 气氧甲烷单喷嘴燃烧室壁面热流的测量和数值模拟[J]. 推进技术, 2018, 39(5): 1033-1040.
[3] 韩 超, 张 培, 叶桃红, 等. 甲烷/空气射流抬举火焰的大涡模拟计算[J]. 推进技术, 2014, 35(5): 654-660.
[4] 吴泽俊, 何小民, 葛佳伟, 等. 甲烷/空气预混火焰回火特性数值模拟[J]. 推进技术, 2015, 36(9): 1347-1354.
[5] 归明月, 范宝春, 叶经方, 等. 甲烷/空气中对撞射流火焰的实验和数值研究[J]. 推进技术, 2008, 29(6): 651-654.
[6] 段冬霞, 崔玉峰, 房爱兵, 等. 旋流强度对甲烷/空气预混火焰CIVB回火的影响[J]. 推进技术, 2017, 38(6): 1327-1334.
[7] 邹文杰, 王 岳, 孔文俊. 轴向旋流器单通道甲烷/空气回火特征大涡模拟研究[J]. 推进技术, 2017, 38(7): 1548-1555.
[8] 王亚洲, 华益新, 孟 华. 超临界压力下低温甲烷的湍流传热数值研究[J]. 推进技术, 2010, 31(5): 606-611.
[9] Hannum N P, Kasper H J, Pavli A J. Experimental and Theoretical Investigation of Fatigue Life in Reusable Rocket Combustion Chambers[R]. AIAA 76-685.
[10] Miller R W. Low-Cycle Fatigue Analysis of a Cooled Copper Combustion Chamber[R]. AIAA 74-1079.
[11] Armstrong W H, Brogren E W. Thrust Chamber Life Prediction, Vol.2. Plug Nozzle Centerbody and Cylinder Life Analysis[R]. NASA Conference Report CR-134822, 1975.
[12] Armstrong W H, Brogren E W. Thrust Chamber Life Prediction, Vol.3. Fatigue Life Parametric Study[R]. NASA CR-134823, 1975.
[13] Arya V K. Nonlinear Structural Analysis of Cylindrical Combustion Chambers Using Viscoplastic Models[J]. Journal of Propulsion and Power, 1991, 8(3): 598-604.
[14] Riccius J R, Zametaev E B. Stationary and Dynamic Thermal Analyses of Cryogenic Liquid Rocket Combustion Chamber Walls[R]. AIAA 2002-3694.
[15] Riccius J R, Zametaev E B, Haidn O J. Influence of Time Dependent Effects on the Estimated Life Time of Liquid Rocket Combustion Chamber Walls[R]. AIAA 2004-3670.
[16] Riccius J R, Zametaev E B, Haidn O J, et al. Comparison of 2D and 3D Structural FE-Analyses of LRE Combustion Chamber Walls[R]. AIAA 2006-4365.
[17] Ferraiuolo M, Russo V, Vafai K. A Comparative Study of Refined and Simplified Thermo-Viscoplastic Modeling of a Combustion Chamber with Regenerative Cooling[J]. International Communications in Heat and Mass Transfer, 2016, 78: 155-162.
[18] Ferraiuolo M, Petrillo W, Riccio A. On the Thermo-Structural Response of a Composite Closeout in a Regeneratively Cooled Combustion Chamber[J]. Aerospace Science and Technology, 2017, 71: 402-411.
[19] Gernoth A, Riccius J R, Haidn O J. TMF Panel Tests: Close-to-Reality Simulation of Thermo-Mechanical Fatigue Processes in Heat-Loaded Walls[R]. AIAA 2008-5237.
[20] Thiede R, Riccius J R, Reese S. Life Prediction of Rocket Combustion-Chamber-Type Thermomechanical Fatigue Panels[J]. Journal of Propulsion and Power, 2017, 33(1): 1-14.
[21] Song J, Sun B. Coupled Numerical Simulation of Combustion and Regenerative Cooling in LOX/Methane Rocket Engines[J]. Applied Thermal Engineering, 2016, 106: 762–773.
[22] Song J, Sun B. Coupled Heat Transfer Analysis of Combustion Chambers with Recessed Shear Coaxial Injectors[J]. Acta Astronautica, 2017, 132(3): 150-160.
[23] Chaboche J L. Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3): 247-302.
[24] 孙 冰, 宋佳文. 液氧甲烷发动机台阶型冷却通道的耦合传热特性[J]. 航空动力学报, 2016, 31(12): 2972-2978.
[25] Poling B E, Prausnitz J M, O’Connell J P. The Properties of Gases and Liquids[M]. New York: McGraw-Hill, 2001.
[26] Esposito J J, Zabora R F. Combustion Chamber Life Prediction, Vol.I. Mechanical and Physical Properties of High-Performance Rocket Nozzle Materials[R]. NASA CR-134806, 1975.
[27] Riccius J R. Cyclic Laser Heating and Optical Measurement of Combustion Chamber Wall Structures[R]. AIAA 2012-4011.
[28] Riccius J R, Bouajila W, Zametaev E B. Comparison of Finite Element Analysis and Experimental Results of a Combustion Chamber Type TMF Panel Test[R]. AIAA 2013-3846.