Study on Lift Enhancement and Drag Reduction of NACA0012Airfoil under Plasma Thermal Effect
1.School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,China;2.Steel Structure Construction,LTD of China Tiesiju Civil Engineering Group,Hefei 230022,China;3.Anhui Key Laboratory of Civil Engineering Structures and Materials,Hefei University of Technology,Hefei 230009,China
LIU Jia-wei1, LIU Zhao-tao1, DING Shi-hong2, YAO Cheng1,3. Study on Lift Enhancement and Drag Reduction of NACA0012Airfoil under Plasma Thermal Effect[J]. Journal of Propulsion Technology, 2020, 41(5): 1055-1062.
[1] Chandrasekhara M S, Martin P B, Tung C. Compressible Dynamic Stall Performance of a Variable Droop Leading Edge Airfoil with a Gurney Flap[J]. Journal of the American Helicopter Society, 2008, 53(1): 18-25.
[2] 马铁林, 马东立, 张 华. 大展弦比柔性机翼气动特性分析[J]. 北京航空航天大学学报, 2007, (7): 781-784.
[3] Corke T C, Enloe C L, Wilkinson S P. Dielectric Barrier Discharge Plasma Actuators for Flow Control[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 505-529.
[4] Sidorenko A, Budovsky A, Pushkarev A, et al. Flight Testing of DBD Plasma Separation Control System[R]. AIAA 2008-373.
[5] Li Yiwen, Li Yinghong, Zhou Zhangwen, et al. Experimental Investigation on Induced Flow Velocity of Plasma Aerodynamic Actuation[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2009, 26(1): 23-28.
[6] Boeuf J P, Pitchford L C. Electrohydrodynamic Force and Aerodynamic Flow Acceleration in Surface Dielectric Barrier Discharge[J]. Journal of Applied Physics, 2005, 97(10).
[7] 廖宏图, 吴铭岚, 汪南豪. 超声速电弧喷射器内等离子体流场的数值模拟[J]. 推进技术, 1999, 20(6):52-57.
[8] Leonov S, Yarantsev D, Gromov V, et al. Mechanism of Flow Control by Near-Surface Discharge Generation[R]. AIAA 2005-780.
[9] Leonov S, Yarantsev D, Soloviev V R. High-Speed Inlet Customization by Surface Electrical Discharge[R]. AIAA 2006-403.
[10] Merriman S, Ploenjes E, Palm P, et al. Shock Wave Control by Nonequilibrium Plasmas in Cold Supersonic Gas Flows[J]. AIAA Journal, 2001, 39(8): 1547-1552.
[11] Meyer R, Palm P, Plonjes E, et al. The Effect of a Nonequilibrium RF Discharge Plasma on a Conical Shock Wave in a M=2.5 Flow[R]. AIAA 2001-3059.
[12] 王 健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30(8):1374-1379.
[13] 王 健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的机理研究[J]. 物理学报, 2009, (8): 5513-5519.
[14] 谭慧俊, 李程鸿, 张 悦, 等. 固定壁面激波控制技术的研究进展[J]. 推进技术, 2016, 37(11): 2001-2008.
[15] Webb N, Clifford C, Samimy M. Preliminary Results on Shock Wave/Boundary Layer Interaction Control Using Localized Arc Filament Plasma Actuators[R]. AIAA 2011-3426.
[16] Webb N, Clifford C, Samimy M. An Investigation of the Control Mechanism of Plasma Actuators in a Shock Wave-Boundary Layer Interaction[R]. AIAA 2013-0402.
[17] 王 浩, 程邦勤, 纪振伟, 等. 局部电弧丝状放电控制激波/边界层干扰的数值研究[J]. 推进技术, 2017, 38(11): 2431-2438.
[18] 梁 华, 吴 云, 李 军, 等. 等离子体气动激励改善增升装置气动性能的试验[J]. 航空学报, 2016, 37(8): 2603-2613.
[19] 梁 华, 李应红, 程邦勤, 等. 等离子体气动激励抑制翼型失速分离的仿真研究[J]. 航空动力学报, 2008, 23(5): 777-783.
[20] 李 林, 张艳华, 张登成, 等. 激励器位置影响环量控制翼型气动特性的实验研究[J]. 高电压技术, 2018, 44(12): 291-300.
[21] 李应红, 吴 云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C]. 南京:中国航空学会动力年会, 2006.
[22] Fridman A, Nester S, Kennedy L A, et al. Gliding Arc Gas Discharge[J]. Progress in Energy and Combustion Science, 1998, 25(2): 211-231.
[23] 刘 凡, 严 红, 詹王杰. 电弧长度及位置对斜激波影响的实验研究[C]. 北京:中国力学大会, 2017.
[24] Ladson C L. Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed Aerodynamic Characteristics of the NACA0012 Airfoil Section[R]. NASA-TM-4074.
[25] Gregory N. Low-Speed Aerodynamic Characteristics of NACA0012 Aerofoil Section, Including the Effects of Upper-Surface Roughness Simulating Hoar Frost[J]. Arc R&M, 1970, 23(48): 6697-6700.
[26] Ladson C L, Hill S A. High Reynolds Number Transonic Tests on a NACA0012 Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel[R]. NASA-TM-100527.
[27] Vinh H, Van Dam C P, Yen D, et al. Drag Prediction Algorithms for Navier-Stokes Solutions about Airfoils[R]. AIAA 95-1788-CP.
[28] 王秉良, 鲁嘉华, 匡江红, 等. 飞机空气动力学[M]. 北京:清华大学出版社, 2013.