Effects of Na3AlF6 on Ignition and Combustion Characteristics of Micron-Sized Aluminum Powder in CO2
1.School of Energy and Environment,Anhui University of Technology,Maanshan 243002,China;2.School of Petroleum Engineering,Changzhou University,Changzhou 213165,China
[1] 胡松启, 李葆萱. 固体火箭发动机燃烧基础[M]. 西安:西北工业大学出版社, 2015.
[2] 王克秀. 固体火箭推进剂及燃烧[M]. 北京:国防工业出版社, 1983.
[3] 谭惠民. 固体推进剂化学与技术[M]. 北京:北京理工大学出版社, 2015.
[4] Mohan S, Furet L, Dreizin E L. Aluminum Particle Ignition in Different Oxidizing Environments[J]. Combustion and Flame, 2010, 157(7): 1356-1363.
[5] 刘 鑫, 刘佩进, 关 昱, 等. 复合推进剂中铝的燃烧实验研究方法[J]. 固体火箭技术, 2015, 38(6): 833-836.
[6] Sarou-Kanian V, Rifflet J C, Millot F, et al. Aluminum Combustion in Wet and Dry CO2: Consequences for Surface Reactions[J]. Combustion and Flame, 2006, 145(1): 220-230.
[7] 严启龙, 张晓宏, 李宏岩, 等. 固体推进剂中铝粉氧化过程及其燃烧效率影响因素[J]. 化学推进剂与高分子材料, 2011, 9(4): 20-26.
[8] Popenko E M, Gromov A A, Shamina Y Y, et al. Combustion of Agglomerated Ultrafine Aluminum Powders in Air[J]. Combustion, Explosion and Shock Waves, 2002, 38(6): 665-669.
[9] Shafirovich E Y, Shiryaev A A, Goldshleger U I. Magnesium and Carbon Dioxide-A Rocket Propellant for Mars Missions[J]. Journal of Propulsion and Power, 1993, 9(2): 197-203.
[10] 王 婷. 包覆纳米铝粉在二氧化碳气氛中的热反应特性及反应动力学[D]. 马鞍山:安徽工业大学, 2016.
[11] Lee Y M, Choi N S, Park J H, et al. Electrochemical Performance of Lithium/Sulfur Batteries with Protected Li Anodes[J]. Journal of Power Sources, 2003, 119: 964-972.
[12] 王传华. 铝基水反应活性材料制备制备及性能研究[D]. 北京:北京理工大学, 2015.
[13] 李上文, 赵凤起, 袁 潮, 等. 国外固体推进剂研究与开发的趋势[J]. 固体火箭技术, 2002, 25(2): 36-42.
[14] Trunov M A, Schoenitz M, Dreizin E L. Ignition of Aluminum Powders under Different Experimental Conditions[J]. Propellants, Explosives, Pyrotechnics, 2010, 30(1): 36-43.
[15] Firmansyah D A, Sullivan K, Lee K S, et al. Microstructural Behavior of the Alumina Shell and Aluminum Core Before and after Melting of Aluminum Nanoparticles[J]. Journal of Physical Chemistry C, 2012, 116(1): 404-411.
[16] Baschung B, Grune D, Licht H H , al et . Combustion of Energetic Materials[M]. New york: Begell House Inc, 2002: 219-225.
[17] 夏 强, 李疏芬, 王桂兰, 等. 超细铝粉在AP/HTPB推进剂中的燃烧研究[J]. 固体火箭技术, 1994, 17(4):35-42.
[18] 汪 亮, 刘华强, 刘敏华. 包覆铝粉破裂燃烧的实验观测[J]. 固体火箭技术, 1999, 22(2): 40-44.
[19] 程志鹏, 杨 毅, 王 毅. 纳米镍包覆超细铝复合粉末的氧化性能[J]. 物理化学学报, 2008, 24(1): 152-156.
[20] Mulamba O, Pantoya M L. Exothermic Surface Chemistry on Aluminum Particles Promoting Reactivity[J]. Applied Surface Science, 2014, 315(1): 90-94.
[21] Deluca L T, Galfetti L, Colombo G, et al. Microstructure Effects in Aluminized Solid Rocket Propellants[J]. Journal of Propulsion and Power, 2010, 26(4): 724-732.
[22] Verma S, Ramakrishna P A. Effect of Specific Surface Area of Aluminum on Composite Solid Propellant Burning[J]. Journal of Propulsion and Power, 2013, 29(5): 1200-1206.
[23] 高东磊, 张 炜, 朱 慧, 等. 纳米铝粉在复合推进剂中的应用[J]. 固体火箭技术, 2007, 30(5): 420-423.
[24] 刘磊力, 李凤生, 杨 毅, 等. 纳米金属和复合金属粉对AP/HTPB推进剂热分解的影响[J]. 推进技术, 2005, 26(5): 458-461.
[25] 张 伟, 谢五喜, 樊学忠, 等. 纳米铝粉对少烟NEPE推进剂燃烧性能的影响[J]. 固体火箭技术, 2014, (4): 516-520.
[26] DeLuca L T, Galfetti L, Severini F, et al. Burning of Nano-Aluminized Composite Rocket Propellants[J]. Combustion Explosion and Shock Waves, 2005, 41(6): 680-692.
[27] Vasilev A V, Gorbunov V V, Shidlovskii A A. The Effect of Certain Additives on Critical Diameter and Combustion Rates of Mixtures of Aluminum with Gelled Water[R]. AD-A000210, 1974.
[28] Zhu B Z, Li F, Sun Y L, et al. The Effects of Different Additives on the Ignition and Combustion Characteristics of Micron-Sized Aluminum Powder in Steam[J]. Energy & Fuels, 2017, 31(8): 8674-8684.
[29] Li F, Zhu B Z, Sun Y L, et al. Hydrogen Generation by Means of the Combustion of Aluminum Powder/Sodium Borohydride in Steam[J]. International Journal of Hydrogen Energy, 2016, 42: 3804-3812.
[30] Skrovan J, Alfantazi A, Troczynski T. Enhancing Aluminum Corrosion in Water[J]. Journal of Applied Electrochemistry, 2009, 39(10): 1695-1702
[31] Dupiano P, Stamatis D, Dreizin E L. Hydrogen Production by Reacting Water with Mechanically Milled Composite Aluminum-Metal Oxide Powders[J]. International Journal of Hydrogen Energy, 2011, 36(8): 4781-4791.
[32] Liu Y, Wang X, Liu H, et al. Effect of Salts Addition on the Hydrogen Generation of Al-LiH Composite Elaborated by Ball Milling[J]. Energy, 2015, 89: 907-913.
[33] Soler L, Candela A M, Macanás J, et al. In Situ Generation of Hydrogen from Water by Aluminum Corrosion in Solutions of Sodium Aluminate [J]. Journal of Power Sources, 2009, 192(1): 21-26.
[34] 徐君莉, 石忠宁, 高炳亮, 等. 氧化铝在熔融冰晶石中的溶解[J]. 东北大学学报(自然科学版), 2003, 24(9): 832-834.
[35] 谢 刚, 邱竹贤. 氧化铝溶解在冰晶石熔体中的结构[J]. 昆明工学院学报, 1991, 16(6): 30-34.
[36] 杨振海, 高炳亮, 徐 宁, 等. 熔融冰晶石中氧化铝的溶解(摄影研究)[J]. 东北大学学报(自然科学版), 1999, 20(4): 398-400.
[37] 姜艳丽, 唐 鑫, 高 凡. 冰晶石-氧化铝熔盐的分子动力学研究[J]. 原子与分子物理学报, 2016, 33(2): 325-329.
[38] 徐 宁, 杨振海, 邱竹贤, 等. 氧化铝在冰晶石熔体中溶解的动力学模型[J]. 东北大学学报(自然科学版), 1999, 20(3): 315-318.
[39] 邱竹贤. 铝电解原理与应用[M]. 徐州:中国矿业大学出版社, 1998.
[40] Phan Xuan D , 霍庆发, 程金秀. 氟化物添加剂对冰晶石中氧化铝熔解热化学特性的影响[J]. 轻金属, 1976(2): 45-51
[41] Glimac N, Krier H, Bazyn T, et al. Temperature Measurement of Aluminum Particles Burning in Carbon Dioxide[J]. Combustion Science & Technology, 2005, 177(3): 485-511.
[42] Rossi S, Dreizin E L, Law C K. Combustion of Aluminum Particles in Carbon Dioxide[J]. Combustion Science & Technology, 2001, 164(1): 209-237.
[43] Ohkura Y, Rao P M, Zheng X L. Flash Ignition of Al Nanoparticles: Mechanism and Applications[J]. Combustion and Flame, 2011, 158(12): 2544-2548.
[44] Levitas V I, Asay B W, Son S F, al at. Mechanochemical Mechanism for Fast Reaction of Metastable Intermolecular Composites Based on Dispersion of Liquid Metal[J]. Journal of Applied Physics, 2007, 101(8).
[45] Levitas V I, Pantoya M L, Dikici B. Melt Dispersion versus Diffusive Oxidation Mechanism for Aluminum Nanoparticles: Critical Experiments and Controlling Parameters[J]. Applied Physics Letters, 2008, 92(1).
[46] Sarou-Kanian V, Rifflet J C, Millot F. On the Role of Carbon Dioxide in the Combustion of Aluminum Droplets[J]. Combustion Science & Technology, 2005, 177(12): 2299-2326.
[47] 杨振海, 高炳亮, 邱竹贤. 金属铝在冰晶石氧化铝熔液中的溶解度测定[J]. 东北大学学报(自然科学版), 2001, 22(1): 64-66.
[48] 李卫红, 徐 宁, 邱竹贤. 氧化铝电解质体系中的胶体[J]. 轻金属, 1998, (6): 31-37.
[49] Mohan S, Dreizin E L. Aluminum Particle Ignition in Mixed Environments[R]. AIAA2009-637.
[50] Ryabkov Y I, Lekanova T L, Sporsheva T M. Reduction of Aluminum Oxide by Carbon at Low Pressures[J]. Russian Journal of Physical Chemistry, 2001, 75(8): 1237-1241.
[51] Zhu B Z, Li F, Sun Y L, et al. The Effects of Additives on the Combustion Characteristics of Aluminum Powder in Steam[J]. RSC Advances, 2017, 7(10): 5725-5732.