推进技术 ›› 2020, Vol. 41 ›› Issue (2): 439-446.DOI: 10.13675/j.cnki.tjjs.190047

• 材料 推进剂 燃料 • 上一篇    下一篇

2.5D C/SiC复合材料带孔板拉伸破坏的多尺度模拟

杜翔宇1,2,高希光1,2,宋迎东1,2,3   

  1. 1.南京航空航天大学 能源与动力学院,航空发动机热环境与热结构工业和信息化部重点实验室, 江苏 南京 210016;2.南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室, 江苏 南京 210016;3.南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
  • 发布日期:2021-08-15
  • 作者简介:杜翔宇,硕士生,研究领域为陶瓷基复合材料。E-mail: duxiangyu@nuaa.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFB0703200);国家自然科学基金(51575261;51675266)。

Multiscale Simulation on Tensile Failure Analysis of 2.5DC/SiC Composite Orifice Plate

  1. 1.Key Laboratory of Aero-Engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2.Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;3.State Key Laboratory of Mechanics and Control Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Published:2021-08-15

摘要: 为了研究2.5D编织陶瓷基复合材料带孔板的拉伸破坏行为,提出一种可以模拟带孔板细观破坏过程的多尺度计算方法。该方法根据2.5D编织陶瓷基复合材料的细观结构建立细观模型,通过子模型法将平板的宏观有限元模型和孔周围区域的细观有限元模型耦合在一起,然后采用渐进损伤计算方法完成带孔板破坏的多尺度模拟。计算结果表明,带孔板在拉伸载荷较低时出现初始损伤,随着载荷的加大经纱发生轴向拉伸破坏,纬纱发生横向的破坏。裂纹从孔边沿横向扩展至板的两端,最终整个板完全断裂失效。失效时的应变为0.375%,最大加载应力为221.7MPa。

关键词: 陶瓷基复合材料;带孔板;子模型法;渐进损伤分析;损伤演化;多尺度计算;航空发动机

Abstract: In order to study the tensile failure behavior of 2.5-dimensional woven ceramic matrix composites orifice plates, a multi-scale calculation method that can simulate the meso-damage process of orifice plates was proposed. A mesoscopic model was established based on the meso-structure of the 2.5-dimensional woven ceramic matrix composite. The submodel method was used to couple the macroscopic finite element model of the plate with the mesoscopic finite element model of the area around the hole. Then the progressive damage calculation method was used to complete the multi-scale simulation of the damage of the orifice plate. The calculation results show that the initial damage occurs when the tensile load is low. As the load increases, the warp yarn undergoes axial tensile failure, and the weft yarn undergoes lateral failure. The crack extends laterally from the edge of the hole to both ends of the plate, and eventually the whole plate is completely broken. The failure strain is 0.375% and the maximum load stress is 221.7MPa.

Key words: Ceramic matrix composites;Orifice plate;Submodel method;Progressive damage method;Damage evolution;Multi-scale calculation;Aero-Engine