推进技术 ›› 2020, Vol. 41 ›› Issue (6): 1379-1386.DOI: 10.13675/j.cnki.tjjs.190130

• 结构 强度 可靠性 • 上一篇    下一篇

整体弹性结构法及在叶片流固耦合分析中的应用

庾明达1,徐自力2,刘贞谷1,冯志鹏1,张毅雄1,陈建国1   

  1. 1.中国核动力研究设计院 核动力设计研究所,四川 成都 610213;2.西安交通大学 航天航空学院 机械结构强度与振动国家重点实验室,陕西 西安 710049
  • 发布日期:2021-08-15
  • 基金资助:
    国家自然科学基金(51606180;11872060)。

A Global Elastic Structure Method and Its Application onFluid-Structure Coupling Analysis of Blade

  1. 1.Nuclear Power Design and Research Sub-Institute,Nuclear Power Institute of China,Chengdu 610213,China;2.State Key Lab for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University, Xi’an 710049,China
  • Published:2021-08-15

摘要: 针对三维叶片时域流固耦合振动响应计算普遍耗时的问题,采用一种假设整体结构的模态位移,求解固体时域响应和实现高效网格变形,发展了一种3维时域流固耦合分析的整体弹性结构方法,并应用于压气机叶片0°和180°相位角的气动稳定性分析中。结果表明,所发展方法的计算结果与传统双向时域算法和文献的结果较为吻合,而计算效率相比于传统算法显著提升;在所分析的两个相位角下,叶片振动的气动阻尼均随流量减小先增大后降低,相比于0°相位角,180°下叶片的气动稳定性大幅提高,表明该方法能有效应用于叶片的工程流固耦合研究。

关键词: 叶片;流固耦合;整体弹性结构;高效网格变形;气动稳定性

Abstract: For the general time-consuming problem of 3D time-domain blade vibration calculation by fluid-solid coupling, the modal displacement of a kind of hypothetical global structure is adopted to calculate the time-domain response of solid and complete the fluid mesh deformation effectively, so a Global-Elastic-Structure method for 3D time-domain fluid-solid coupling analysis is developed, which is applied to the aerodynamic stability analysis of compressor blades on 0° inter blade phase angle (IBPA) and 180° IBPA. The results show that the calculated results by the proposed method are mainly consistent with those of traditional two-way time-domain method and literatures, while the calculation efficiency improves significantly compared to the traditional method. On the two IBPAs involved, the aerodynamic dampings of blade vibration both increase first and then drop with the decrease of the flow-rate, the aerodynamic stability of the blade on 180°IBPA is greatly improved compared with that of 0°IBPA, indicating that the proposed method can be effectively applied to the engineering fluid-solid coupling analysis of blades.

Key words: Blade;Fluid-structure coupling;Global elastic structure;Efficient mesh deformation;Aerodynamic stability