推进技术 ›› 2020, Vol. 41 ›› Issue (8): 1841-1849.DOI: 10.13675/j.cnki.tjjs.190135
戴洪德1,陈强强2,3,戴邵武2,朱敏2
摘要: 由于机械系统的复杂性,滚动轴承振动信号的特征信息表现在不同尺度上,因此需要对振动信号进行多尺度分析。基于此,提出一种基于平滑先验分析(Smoothness priors approach,SPA)和排列熵(Permutation entropy,PE)的滚动轴承故障诊断方法。该方法首先采用平滑先验分析方法代替传统的时间序列分解方法对滚动轴承信号进行分解,得到轴承信号的趋势项和去趋势项;其次,分别计算趋势项和去趋势项的排列熵值;最后,将排列熵值作为特征向量,输入基于粒子群优化支持向量机建立的分类器。将该方法应用于滚动轴承实验数据并进行对比分析,结果表明,在训练样本数为每类50%的条件下,该方法的故障诊断正确率比PE和经验模态分解-PE分别高出12.5%和3.125%。