推进技术 ›› 2020, Vol. 41 ›› Issue (2): 241-259.DOI: 10.13675/j.cnki.tjjs.190376
• 综述 • 下一篇
张悦1,谭慧俊1,王子运1,李鑫1,郭赟杰1
发布日期:
2021-08-15
作者简介:
张 悦,博士,副教授,研究领域为内流空气动力学。E-mail:
y.zhang@nuaa.edu.cn
基金资助:
Published:
2021-08-15
摘要: 进气道作为高速航空航天飞行器的重要气动部件,对飞行器的气动力特性、结构重量、隐身性能等有显著影响。激波/边界层干扰现象是高速进气道内普遍存在的一类流动现象,对进气道的性能有突出的影响。发生于进气道内的激波/边界层干扰现象主要可分为正激波/边界层干扰、斜激波/边界层干扰以及三维激波/边界层干扰几类,由于受到侧壁壁面和进气道内背景波系的影响,这些干扰现象偏离了传统基于简化模型的研究结果,具有显著的耦合干扰特征,干扰区间内三维特征明显。概述了发生于进气道内的激波/边界层干扰特性及相关研究进展,并对目前进气道内激波/边界层干扰现象的控制方法进行了总结。
张悦,谭慧俊,王子运,李鑫,郭赟杰. 进气道内激波
ZHANG Yue1,TAN Hui-jun1,WANG Zi-yun1,LI Xin1,GUO Yun-jie1. Progress of Shock Wave/Boundary Layer Interactionand Its Control in Inlet[J]. Journal of Propulsion Technology, 2020, 41(2): 241-259.
[1] Seddon J , Goldsmith E L . Intake Aerodynamics (Second Edition) [M]. Reston: AIAA Education Series, 1999. [2] 刘大响 . 航空发动机设计手册—第7册 进排气装置[M]. 北京: 航空工业出版社, 2000. [3] Thomas G H , Dutton J G , Gregory S E . Surface Flow Visualization and Pressure Sensitive Paint Measurements in the Large-Scale Low-Boom Inlet [J]. Journal of Propulsion and Power, 2012, 28( 6): 1243- 1256. [4] Dave S , John S , Vance D , et al . TBCC Inlet Experiments and Analysis[R]. NASA-TM-2008-6598 . [5] Carroll B F , Duttont J C . An LDV Investigation of a Multiple Normal Shock Wave/Turbulent Boundary Layer Interaction [R]. AIAA 89- 0355. [6] Souverein L J , Oudheusden B W , Scarano F , et al . Unsteadiness Characterization in a Shock Wave Turbulent Boundary Layer Interaction through Dual-PIV[R]. AIAA 2008- 4169. [7] Poggie J , Erbland P J , Smits A J , et al . Quantitative Visualization of Compressible Turbulent Shear Flows Using Condensate-Enhanced Rayleigh Scattering [J]. Experiments in Fluids, 2004, 37( 3): 438– 454. [8] 易仕和, 田立丰, 赵玉新, 等 . 基于 NPLS 技术的可压缩湍流机理实验研究新进展[J]. 力学进展, 2011, 41 ( 4): 379- 390. [9] Ferri A . Experimental Results with Airfoils Tested in the High-Speed Tunnel at Guidonia[R]. California: Technical Report Archive & Image Library, 1940. [10] Seddon J . The Flow Produced by Interaction of a Turbulent Boundary Layer with a Normal Shock Wave of Strength Sufficient to Cause Separation [M]. London: Her Majesty’s Stationery Office, 1967. [11] Matsuo K , Miyazato Y , Kim H D . Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows [J]. Progress in Aerospace Sicence, 1999, 35( 1): 33- 100. [12] Pirozzoli S , Bernardini M , Grasso F . Direct Numerical Simulation of Transonic Shock/Boundary Layer Interaction under Conditions of Incipient Separation [J]. Journal of Fluid Mechanics, 2010, 657: 361- 393. [13] Sirieix M , Delery J , Stanewsky E . High-Reynolds Number Boundary-Layer Shock-Wave Interaction in Transonic Flow [M]. Berlin: Springer, 1981. [14] Delery J , Marvin J G , Reshotko E . Shock-Wave Boundary Layer Interactions[R]. AGARD-AG-280, 1986. [15] Sirieix M , Delery J , Stanewsky E . High-Reynolds Number Boundary-Layer Shock-Wave Interaction in Transonic Flow[M]. Berlin: Springer, 1981. [16] Vidal R , Wittliff C , Catlin P , et al . Reynolds Number Effects on the Shock Wave-Turbulent Boundary Layer Interaction at Transonic Speeds[R]. AIAA 1973- 661. [17] Babinsky H , John K . Shock Wave Boundary Layer Interactions[M]. London: Cambridge University Press, 2011. [18] Doerffer P , Dallmann U . Reynolds Number Effect on Separation Structures at Normal Shock Wave/Turbulent Boundary-Layer Interaction[J]. AIAA Journal, 1989, 27( 9): 1206- 1212. [19] Padova C , Falk T , Wittliff C . Experimental Investigation of Similitude Parameters Governing Transonic Shock-Boundary Layer Interactions[C]. Pasadena: 18th Aerospace Sciences Meeting, 1980. [20] Schofield W H . Interaction of a Turbulent Boundary Layer with a Normal Shock Wave Followed by an Adverse Pressure Gradient[R]. Victoria: Aeronautical Research Labs Melbourne, 1983. [21] Tan H J , Sun S , Huang H X . Behavior of Shock Trains in a Hypersonic Inlet/Isolator Model with Complex Background Waves [J]. Experiments in Fluids, 2012, 53( 6): 1647- 1661. [22] Sajben M , Morris M J , Bogar T J , et al . Confined Normal-Shock/Turbulent-Boundary-Layer Interaction Followed by an Adverse Pressure Gradient[J]. AIAA Journal, 1991, 29( 12): 2115- 2123. [23] Blosch E , Carroll B F , Morris M J . Numerical Simulation of Confined Transonic Normal Shock Wave/Turbulent Boundary-Layer Interactions[J]. AIAA Journal, 1993, 31( 12): 2241- 2246. [24] Loth E , Titchener N , Babinsky H , et al . Canonical Normal Shock Wave/Boundary-Layer Interaction Flows Relevant to External Compression Inlets[J]. AIAA Journal, 2013, 51( 9): 2208- 2217. [25] Titchener N , Babinsky H . Micro-Vortex Generators Applied to a Flow-Field Containing a Normal Shock-Wave and Diffuser[C]. Orlando: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010. [26] Titchener N , Babinsky H . Microvortex Generators Applied to a Flowfield Containing a Normal Shock Wave and Diffuser [J]. AIAA Journal, 2011, 49( 5): 1046- 1056. [27] Rybalko M , Babinsky H , Loth E . Vortex Generators for a Normal Shock/Boundary Layer Interaction with a Downstream Diffuser [J]. Journal of Propulsion and Power, 2012, 28( 1): 71- 82. [28] Titchener N , Bruce P , Babinsky H . An Experimental Investigation of Corner Bleed Applied to a Normal Shock-Wave/Boundary-Layer Interaction and Diffuser[C]. Orlando: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011. [29] Titchener N , Babinsky H . Control of a Shock-Wave/Boundary-Layer Interaction and Subsequent Subsonic Diffuser Using a Combination of Vortex Generators and Bleed[C]. Nashville: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012. [30] Titchener N , Babinsky H . Shock Wave/Boundary-Layer Interaction Control Using a Combination of Vortex Generators and Bleed[J]. AIAA Journal, 2013, 51( 5): 1221- 1233. [31] Handa T , Masuda M , Matsuo K . Three-Dimensional Normal Shock-Wave/Boundary-Layer Interaction in a Rectangular Duct[J]. AIAA Journal, 2005, 43( 10): 2182- 2187. [32] Bruce P J K , Burton D M F , Titchener N A , et al . Corner Effect and Separation in Transonic Channel Flows [J]. Journal of Fluid Mechanics, 2011, 679: 247- 262. [33] Burton D M F , Babinsky H . Corner Separation Effects for Normal Shock Wave/Turbulent Boundary Layer Interactions in Rectangular Channels[J]. Journal of Fluid Mechanics, 2012, 707: 287- 306. [34] Pizzella M P , Warning S , Jennerjohn M , et al . Numerical Investigation of a Normal Shock Wave Boundary Layer Interaction in a 4.3 Aspect Ratio Test Section [C]. San Diego: 54th AIAA Aerospace Sciences Meeting, 2016. [35] Pizzella M P , Warning S , McQuilling M W , et al . On the Effect of Test Section Aspect Ratio for Shock Wave-Boundary Layer Interactions[C]. Grapevine: 55th AIAA Aerospace Sciences Meeting, 2017. [36] Pizzella M , Warning S , Jennerjohn M , et al . Shock-Wave/Boundary-Layer Interaction in a Large-Aspect-Ratio Test Section[J]. AIAA Journal, 2017, 55( 9): 2919- 2928. [37] Delery J M . Shock Wave/Turbulent Boundary Layer Interaction and Its Control[J]. Progress in Aerospace Sciences, 1985, 22( 4): 209- 280. [38] Dolling, David S . Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? [J]. AIAA Journal, 2001, 39( 8): 1517- 1531. [39] Delery J , Dussauge J P . Some Physical Aspects of Shock Wave/Boundary Layer Interactions[J]. Shock Waves, 2009, 19( 6): 453- 468. [40] Chew Y T . Shock Wave and Boundary Layer Interaction in the Presence of an Expansion Corner[J]. Aeronautical Quarterly, 1979, 30( 3): 506- 527. [41] Chung K M , Lu F K . Hypersonic Turbulent Expansion-Corner Flow with Shock Impingement[J]. Journal of Propulsion and Power, 1995, 11( 3): 441- 447. [42] Hawbold R J , Sullivan P A , Gottlieb J . Interactions Between Shock Wave and Hypersonic Laminar Boundary Layer near Convex Corner [J]. Journal of Spacecraft and Rockets, 1995, 32( 5): 783- 790. [43] Sathianarayanan A , Verma S B . Experimental Investigation of an Incident Shock-Induced Interaction near an Expansion Corner[J]. Journal of Spacecraft and Rockets, 2017, 54( 3): 769- 773. [44] Zhang Yue , Tan Hui-jun , Zhuang Yi , et al . Influence of Expansion Waves on Cowl Shock/Boundary Layer Interaction in Hypersonic Inlets[J]. Journal of Propulsion and Power, 2014, 30( 5): 1183- 1191. [45] Zhang Yue , Tan Hui-jun , Tian Fang-chao , et al . Control of Incident Shock/Boundary Layer Interaction by a Two-Dimensional Bump[J]. AIAA Journal, 2014, 52( 4): 767- 776. [46] Wang B , Sandham N , Hu Z , et al . Numerical Study of Oblique Shock-Wave/Boundary-Layer Interaction Considering Sidewall Effects[J]. Journal of Fluid Mechanics, 2015, 767: 526- 561. [47] Huang H X , Tan H J , Sun S , et al . Evolution of Supersonic Corner Vortex in a Hypersonic Inlet/Isolator Model[J]. Physics of Fluids, 2016, 28( 12). [48] He L , Yi S H , Zhao Y X , et al . Visualization of Coherent Structures in a Supersonic Flat-Plate Boundary Layer [J]. Chinese Sci Bull, 2011, 56: 489- 494. [49] He L , Yi S H , Zhao Y X , et al . Experimental Study of a Supersonic Turbulent Boundary Layer Using PIV[J]. Science China (Physics, Mechanics & Astronomy), 2011, 54( 9): 1702- 1709. [50] Zhuang Y , Tan H J , Liu Y Z , et al . High Resolution Visualization of G?rtler-Like Vortices in Supersonic Compression Ramp Flow[J]. Journal of Visualization, 2017, 20( 3): 505- 508. [51] Zhuang Y , Tan H , Li X , et al . G?rtler-Like Vortices in an Impinging Shock Wave/Turbulent Boundary Layer Interaction Flow[J]. Physics of Fluids, 2018, 30( 6). [52] Zhuang Y , Tan H , Li X , et al . Evolution of Coherent Vortical Structures in a Shock Wave/Turbulent Boundary-Layer Interaction Flow[J]. Physics of Fluids, 2018, 30( 11). [53] Mahapatra D , Jagadeesh G . Studies on Unsteady Shock Interactions near a Generic Scramjet Inlet[J]. AIAA Journal, 2009, 47( 9): 2223- 2232. [54] Bachchan N , Hillier R . Hypersonic Inlet Flow Analysis at Off-Design Conditions[R]. AIAA 2004- 5380. [55] Boon S , Hillier R . Hypersonic Inlet Flow Analysis at Mach 5, 6, and 7 [R]. AIAA 2006- 0012. [56] Boon S , Hillier R . Mach 6 Hypersonic Inlet Flow Analysis at Incidence [R]. AIAA 2006- 3036. [57] TAO Yuan , FAN Xiaoqiang , ZHAO Yilong . Viscous Effects of Shock Reflection Hysteresis in Steady Super-Sonic Flows[J]. Journal of Fluid Mechanics, 2014, 759: 134- 148. [58] Jiao Xiaoliang , Chang Juntao , Wang Zhongqi , et al . Mechanism Study on Local Unstart of Hypersonic Inlet at High Mach Number [J]. AIAA Journal, 2015, 53( 10): 3102- 3112. [59] Token K H . Heat Transfer Due to Shock Wave/Turbulent Boundary Layer Interactions on High Speed Weapon Systems[R]. AFFDL TR-74-77, 1974. [60] Kubota H , Stollery J L . An Experimental Study of the Interaction Between a Glancing Shock Wave and a Turbulent Boundary Layer[J]. Journal of Fluid Mechanics, 1982, 116: 431- 458. [61] Arora Nishul , Ali Mohd Y , Yang Zhang , et al . Shock-Boundary Layer Interaction Due to a Sharp Unswept Fin in a Mach 2 Flow[J]. AIAA Journal, 2015, 53( 4): 1579- 1593. [62] Arora Nishul , Ali Mohd Y. , Yang Zhang , et al . Flowfield Measurements in a Mach 2 Fin-Generated Shock/Boundary-Layer Interaction [J]. AIAA Journal, 2018, 56( 10): 3963- 3974. [63] Sheng Fa-jia , Tan Hui-jun , Zhuang Yi , et al . Visualization of Conical Vortex and Shock in Swept Shock/Turbulent Boundary Layer Interaction Flow[J]. Journal of Visualization, 2018, 21: 909- 914. [64] 盛发家, 谭慧俊, 黄河峡, 等 . 连续双扫掠激波/湍流边界层干扰流动特性研究[J]. 推进技术, 2019, 40( 5): 435- 443. [65] 王 娇, 谭慧俊, 黄河峡 . Bump进气道中鼓包诱导的激波/边界层干扰特性[J]. 航空动力学报, 2018, 33( 1): 97- 107. [66] 王 娇, 谭慧俊, 黄河峡 . 不同波系配置的鼓包压缩面引起的激波/边界层干扰特性[J]. 航空动力学报, 2018, 33( 2): 372- 382. [67] 刘亚洲, 谭慧俊, 黄河峡, 等 . 不同波系配置的鼓包压缩面流动特性实验研究[J]. 推进技术, 2019, 40( 8 [68] 谭慧俊, 李程鸿, 张 悦, 等 . 固定壁面激波控制技术的研究进展[J]. 推进技术, 2016, 37( 11): 2001- 2008. [69] Schulte D , Henckels A , Neubacher R . Manipulation of Shock/Boundary-Layer Interactions in Hypersonic Inlets [J]. Journal of Propulsion and Power, 2001, 17( 3): 585- 590. [70] John S . Improvements in Modeling 90-Degree Bleed Holes for Supersonic Inlets[J]. Journal of Propulsion and Power, 2012, 28( 4): 773- 781. [71] Michael K S , Neal E H , Allan P . Data Analysis of the HyShot 2 Scramjet Flight Experiment[J]. AIAA Journal, 2006, 44( 10): 2366- 2375. [72] Reddy D R . Computation of Crossing Glancing Shocks-Turbulent Boundary Layer Interaction with Bleed[R]. AIAA 98- 0958. [73] Schulte D , Henckels A , Wepler U . Reduction of Shock Induced Boundary Layer Separation in Hypersonic Inlets using Bleed[J]. Aerospace Science and Technology, 1998, 2( 4): 231- 239. [74] H?berle J , Gülhan A . Internal Flowfield Investigation of a Hypersonic Inlet at Mach 6 with Bleed[J]. Journal of Propulsion and Power, 2007, 23( 5): 1007- 1017. [75] Boyce R R , Paull A . Scramjet Intake and Exhaust CFD Studies for the HyShot Scramjet Flight Experiment [R]. AIAA 2001- 1891. [76] Lin J C . Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation[J]. Progress in Aerospace Sciences, 2002, 38( 4): 389- 420. [77] Anderson B H , Tinapple J , Surber L . Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation [R]. AIAA 2006- 3197. [78] Charles W , Ford P , Babinsky H . Micro-Ramp Control for Oblique Shock Wave/Boundary Layer Interactions [R]. AIAA 2007- 4115. [79] Blinde P L , Humble R A , Oudheusden B W , et al . Effects of Micro-Ramps on a Shock Wave/Turbulent Boundary Layer Interaction[J]. Shock Wave, 2009, 19( 6): 507- 520. [80] Shinn A F , Vanka S P . Application of BCFD Unstructured Grid Solver to Simulation of Micro-Ramp Control of Shock/Boundary Layer Interactions[R]. AIAA 2007- 3914. [81] Zhang Y , Tan H J , Du M C , et al . Control of Shock/Boundary-Layer Interaction for Hypersonic Inlets by Highly Swept Microramps[J]. Journal of Propulsion and Power, 2015, 31( 1): 133- 143. [82] 张 悦, 高婉宁, 程代姝 . 基于记忆合金的可变形涡流发生器控制唇罩激波/边界层干扰研究[J]. 推进技术, 2018, 39( 12): 2755- 2763. [83] Bruce P J K , Colliss S P . Review of Research into Shock Control Bumps[J]. Shock Waves, 2015, 25( 5): 451- 471. [84] 张 悦, 谭慧俊, 张启帆, 等 . 一种进气道内激波/边界层干扰控制的新方法及其流动机理[J]. 宇航学报, 2012, 33( 2): 265- 273. [85] Zhang Y , Tan H J , Tian F C , et al . Control of Incident Shock/Boundary-Layer Interaction by a Two-Dimensional Bump [J]. AIAA Journal, 2014, 52( 4): 767- 776. [86] Zhang Y , Tan H J , Sun S , et al . Control of Cowl Shock/Boundary-Layer Interaction in Hypersonic Inlets by Bump [J]. AIAA Journal, 2015, 53( 11): 3492- 3496. [87] Zhang Y , Tan H J , Li J F , et al . Control of Cowl-Shock/Boundary-Layer Interactions by Deformable Shape-Memory Alloy Bump [J]. AIAA Journal, 2018, 56( 2): 1- 10. [88] Grossman K R , Cybyk B Z , Vanwie D M . Sparkjet Actuators for Flow Control [C]. Reno: 41th Aerospace Sciences Meeting and Exhibit, 2003. [89] Wang J J , Choi K S , Feng L H , et al . Recent Developments in DBD Plasma Flow Control [J]. Progress in Aerospace Sciences, 2013, 62( 4): 52- 78. [90] Corke T C , Enloe C L , Wilkinson S P . Dielectric Barrier Discharge Plasma Actuators for Flow Control[J]. Annual Review of Fluid Mechanics, 2010, 42( 1): 505- 529. [91] Leonov S B , Yarantsev D , Firsov A , et al . Plasma Control of SW Configuration in M=2 Inlet at Off-Design Mode [C]. San Diego: 43rd Fluid Dynamics Conference, 2013. [92] Thomas E , Ali M Y , Foster C , et al . SparkJet Actuator Characterization in Supersonic Crossflow[C]. USA: 6th AIAA Flow Control Conference, 2012. [93] Zhang Yu-chao , Tan Hui-jun , Huang He-xia , et al . Transient Flow Patterns of Multiple Plasma Synthetic Jets under Different Ambient Pressures[J]. Flow Turbulence Combustion, 2018, 6: 1- 17. [94] Laurendeau F , Chedevergne F , Léon O . PIV and Electric Characterization of a Plasma Synthetic Jet Actuator [C]. Dallas: AIAA Fluid Dynamics Conference, 2013. [95] Narayanaswamy V , Raja L L , Clemens N T . Control of a Shock/Boundary-Layer Interaction by Using a Pulsed-Plasma Jet Actuator[J]. AIAA Journal, 2012, 50( 1): 246- 249. [96] Huang He-Xia , Tan Hui-Jun , Sun Shu , et al . Transient Interaction Between Plasma Jet and Supersonic Compression Ramp Flow[J]. Physics of Fluids, 2018, 30( 4). |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部