推进技术 ›› 2020, Vol. 41 ›› Issue (8): 1861-1870.DOI: 10.13675/j.cnki.tjjs.190553

• 测试 试验 控制 • 上一篇    下一篇

高空台飞行环境模拟系统温度延时不确定性μ综合设计

朱美印1,2,王曦1,2,裴希同3,张松3,但志宏3,刘佳帅1,2,缪柯强1,2,姜震1,2   

  1. 1.北京航空航天大学 能源与动力工程学院,北京 100191;2.先进航空发动机协同创新中心,北京 100191;3.中国航发四川燃气涡轮研究院 高空模拟技术重点实验室,四川 绵阳 621703
  • 发布日期:2021-08-15
  • 作者简介:朱美印,博士生,研究领域为航空发动机控制、高空台数字仿真平台研究以及鲁棒控制等。E-mail:mecalzmy@163.com

Temperature Delay Uncertainty μ Synthesis for Flight Environment Simulation System of Altitude Ground Test Facilities

  1. 1.School of Energy and Power Engineering,Beihang University,Beijing 100191,China;2.Collaborative Innovation Center for Advanced Aero-Engine,Beijing 100191,China;3.Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China
  • Published:2021-08-15

摘要: 针对高空台飞行环境模拟系统温度大延时特性的控制问题,提出了一种考虑温度延时不确定性的两自由度μ综合控制设计方法以提升其温度的控制精度。在考虑变比热容腔微分方程、管壁传热、调节阀流量特性、液压伺服动态、传感器增益以及温度延迟对飞行环境模拟系统造成的建模不确定性的基础上,建立了完整、准确的非线性延时模型。在考虑执行机构参数、温度延时不确定性的基础上,提出了两自由度的μ综合控制设计方法。为了确保设计的控制器具有良好鲁棒伺服跟踪性能,基于分频设计的思想设计性能加权函数和控制量加权函数,并运用D-K迭代算法设计控制器。假定了包含“等马赫数爬升”和“平飞加速”的试验过程来验证μ综合控制器的伺服跟踪性能,仿真结果表明,飞行环境模拟系统温度和压力的稳态和动态误差分别均不大于1.5%和3%。

关键词: 高空模拟试验台;飞行环境模拟系统;温度延时;鲁棒控制;两自由度μ综合控制

Abstract: Aiming at the control problem of large temperature delay of flight environment simulation system (FESS) of altitude ground test facilities (AGTF), a two degree-of-freedom μ synthesis control design method considering temperature delay uncertainty is proposed. A complete and accurate nonlinear model of FESS is established. The FESS modeling uncertainties caused by variable specific heat volume differential equation, pipe heat transfer, control valve flow characteristics, hydraulic servo system dynamics, sensor gain, and temperature delay are considered in this model. By considering the actuator parameter and temperature delay uncertainty of FESS, a two degree-of-freedom μ synthesis control design method is presented. To ensure the designed μ synthesis controller has good robust servo tracking performance, the performance and control output weighting functions are designed according to the frequency division weighting principle. The μ synthesis controller is designed by using the D-K iteration method. A typical engine test condition with Zoom-Climb and Mach Dash is supposed to verify the servo tracking performance of the designed μ synthesis controller. The simulation results show that the relative steady-state and transient errors of temperature and pressure of FESS are both less than 1.5% and 3%, respectively.

Key words: Altitude ground test facilities;Flight environment simulation system;Temperature delay;Robust control;Two-degree-of-freedom μ synthesis control