推进技术 ›› 2021, Vol. 42 ›› Issue (1): 82-93.DOI: 10.13675/j.cnki.tjjs.200213
王嘉辉1,2,张华良1,2,尹钊1,李文1,2,3,陈海生1,2,3,汤洪涛3
出版日期:
2021-01-15
发布日期:
2021-01-15
作者简介:
王嘉辉,硕士生,研究领域为涡轮气动热力学。E-mail:wangjiahui@iet.cn
基金资助:
Online:
2021-01-15
Published:
2021-01-15
摘要: 轴流涡轮损失预测模型是开展先进轴流涡轮设计优化、特别是低维快速性能预测的重要工具和基础,更准确通用的损失模型一直是涡轮气动热力学领域研究的重点。近年来,精细化设计理念的深入对损失模型提出更高的精度要求,同时先进实验测量方法和数值模拟技术的发展也为建立更精准的损失模型提供了可能。因此,本文首先梳理了轴流涡轮损失模型的发展历程及近年来的发展趋势,并结合最新研究进展分析目前仍存在的不足,最后对轴流涡轮损失模型的未来研究重点和发展趋势进行展望。
王嘉辉,张华良,尹钊,李文,陈海生,汤洪涛. 轴流涡轮损失模型研究进展[J]. 推进技术, 2021, 42(1): 82-93.
WANG Jia-hui1,2, ZHANG Hua-liang1,2, YIN Zhao1, LI Wen1,2,3, CHEN Hai-sheng1,2,3, TANG Hong-tao3. Review of Axial Turbine Loss Model[J]. Journal of Propulsion Technology, 2021, 42(1): 82-93.
[1] Javaniyan J H, Eftari M, Shahhoseini M R, et al. A Method of Performance Estimation for Axial Flow Turbines Based on Losses Prediction[J]. Journal of Mechanical Research and Application, 2012, 4(1): 35-43. [2] Ning Wei. Significance of Loss Models in Aerothermodynamic Simulation for Axial Turbines[D]. Stockholm: Royal Institute of Technology, 2000. [3] 华 鑫, 乔渭阳, 卢 蕊, 等. 基于流线曲率法的航空轴流涡轮损失模型研究[J]. 机械设计与制造, 2005, (12): 12-14. [4] 靳 杰, 温风波, 韩万金, 等. 不同损失模型对气冷涡轮S2流面优化影响的分析[J]. 热能动力工程, 2009, 24(1): 12-18. [5] Bertini F, Ampellio E, Marconcini M, et al. A Critical Numerical Review of Loss Correlation Models and Smith Diagram for Modern Low Pressure Turbine Stages[R]. ASME GT 2013-94849. [6] Hall S R. Investigation of the Effects of Compressibility on Profile Pressure Losses in Axial Turbine Cascades[D]. Ottawa: Carleton University, 2012. [7] 邵梓一, 李 文, 张雪辉, 等. 透平内部非稳态流动试验研究进展[J]. 推进技术, 2019, 40(10): 2161-2174. [8] Pinto R N, Afzal A, D’Souza L V, et al. Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art[J]. Archives of Computational Methods in Engineering, 2017, 24(3): 467-479. [9] 杨卓君. 燃气涡轮气膜冷却的优化设计与气热性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. [10] Zhang J, Zhang S, Wang C, et al. Recent Advances in Film Cooling Enhancement: A Review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119-1136. [11] Puente R, Paniagua G, Verstraete T. Design Trade-Off Study Between Efficiency and Rotor Forcing Attenuation in a Transonic Turbine Stage[J]. Applied Mathematical Modelling, 2015, 39(2): 838-850. [12] 朱俊强, 屈 骁, 张燕峰, 等. 高负荷低压涡轮内部非定常流动机理及其控制策略研究进展[J]. 推进技术, 2017, 38(10): 2186-2199. [13] Jain N, Bravo L, Kim D, et al. Massively Parallel Large Eddy Simulation of Rotating Turbomachinery for Variable Speed Gas Turbine Engine Operation[J]. Energies, 2020, 13(3): 703. [14] Lanzillotta F, Sciacchitano A, Rao A G. Effect of Film Cooling on the Aerodynamic Performance of an Airfoil[J]. International Journal of Heat and Fluid Flow, 2017, 66: 108-120. [15] Dahlquist A N. Investigation of Losses Prediction Methods in 1D for Axial Gas Turbines[D]. Lund: Lund University, 2008. [16] Ennil A B, Al-Dadah R, Mahmoud S, et al. Minimization of Loss in Small Scale Axial Air Turbine Using CFD Modeling and Evolutionary Algorithm Optimization[J]. Applied Thermal Engineering, 2016, 102: 841-848. [17] 林晓春. 透平叶片气膜冷却及冷气掺混损失研究[D]. 北京: 中国科学院工程热物理研究所, 2018. [18] Zlatinov M B, Sooi Tan C, Montgomery M, et al. Turbine Hub and Shroud Sealing Flow Loss Mechanisms[J]. Journal of Turbomachinery, 2012, 134(6). [19] Bo?i? I, Beni?ek M. An Improved Formula for Determination of Secondary Energy Losses in the Runner of Kaplan Turbine[J]. Renewable Energy, 2016, 94: 537-546. [20] Curtis E M, Hodson H P, Banieghbal M R, et al. Development of Blade Profiles for Low-Pressure Turbine Applications[J]. Journal of Turbomachinery, 1997, 119(3): 531-538. [21] 魏佐君. 高负荷涡轮端区非定常流动机理及损失控制研究[D]. 西安: 西北工业大学, 2016. [22] Booth T C. Importance of Tip Clearance Flows in Turbine Design[R]. Von Karman Institute, VKI LS 1985-05, 1985. [23] 丁小娟, 钟兢军, 陆华伟. 涡轮平面叶栅设计工况下旋涡结构分析[J]. 节能技术, 2017, 35(5): 396-401. [24] 易小兰, 张华良, 苏 赫, 等. 超高负荷涡轮叶栅内的旋涡结构分析[J]. 工程热物理学报, 2014, 35(7): 1290-1294. [25] Gao J, Zheng Q, Liu Y, et al. Effects of Blade Rotation on Axial Turbine Tip Leakage Vortex Breakdown and Loss[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(9): 1634-1649. [26] Walters D K, Leylek J H. Impact of Film-Cooling Jets on Turbine Aerodynamic Losses[J]. Journal of Turbomachinery, 2000, 122(3): 537-545. [27] 高 扬. 透平气膜冷却与冷气掺混损失研究[D]. 北京: 中国科学院工程热物理研究所, 2015. [28] 王远庆. 低稠度叶尖涡轮的气动设计与试验研究[D]. 南京: 南京航空航天大学, 2018. [29] Coull J D. Endwall Loss in Turbine Cascades[J]. Journal of Turbomachinery, 2017, 139(8). [30] Gao J, Zheng Q, Xu T, et al. Inlet Conditions Effect on Tip Leakage Vortex Breakdown in Unshrouded Axial Turbines[J]. Energy, 2015, 91: 255-263. [31] Ainley D G, Mathieson G C. A Method of Performance Estimation for Axial-Flow Turbines[R]. Aeronautical Research Council London(United Kingdom), ARC-R/M-2974, 1951. [32] Soderberg C R. Gas Turbine Laboratory. Massaehusetts Institute of Technology[R]. Unpublished Notes, 1949. [33] Carter A F, Lenherr F K. Correlations of Turbine Blade Total-Pressure-Loss Coefficients Derived from Achievable Stage Efficiency Data[R]. ASME 68-WA/GT-5, 1968. [34] Dunham J, Came P M. Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction[J]. Journal of Engineering for Power, 1970, 92(3): 252-256. [35] Kacker S C, Okapuu U. A Mean Line Prediction Method for Axial Flow Turbine Efficiency[J]. Journal of Engineering for Power, 1982, 104: 111-119. [36] Craig H R M, Cox H J A. Performance Estimation of Axial Flow Turbines[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 407-424. [37] Chen S. A Loss Model for the Transonic Flow Low-Pressure Steam Turbine Blades[R]. IME, C271/87, 1987: 145-153. [38] Traupel W. Thermische Turbomaschinen[M]. Berlin: Springer Verlag, 1977. [39] Stewart W L. Analysis of Two-Dimensional Compressible-Flow Loss Characteristics Downstream of Turbomachine Blade Rows in Terms of Basic Boundary-Layer Characteristics[R]. NACA TN 3515, 1955. [40] Stewart W L, Whitney W J, Wong R Y. A Study of Boundary-Layer Characteristics of Turbomachine Blade Rows and Their Relation to Over-All Blade Loss[J]. Journal of Basic Engineering, 1960, 82(3): 588-592. [41] Balje O E, Binsley R L. Axial Turbine Performance Evaluation. Part A—Loss-Geometry Relationships[J]. Journal of Engineering for Power, 1968, 90(4): 341-348. [42] Ehrich F F, Detra R W. Transport of the Boundary Layer in Secondary Flow[J]. Journal of the Aeronautical Sciences, 1954, 21(2): 136-138. [43] Scholz N. Secondary flow losses in Turbine Cascades[J]. Journal of the Aeronautical Sciences, 1954, 21(10): 707-708. [44] Hawthorne W R. Some Formulae for the Calculation of Secondary Flow in Cascades[R]. Aeronautical Research Council, 1955. [45] Boulter R A. The Effect of Aspect Ratio on the Secondary Losses in a Cascade of Impulse Turbine Blades[R]. Unpublished Pamertrada Report, 1962. [46] Sharma O P, Butler T L. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades[J]. Journal of Turbomachinery, 1987, 109(2): 229-236. [47] Okan M B, Gregory-Smith D G. A Simple Method for Estimating Secondary Losses in Turbines at the Preliminary Design Stage[R]. ASME 92-GT-294. [48] Lakshminarayana B. Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery[J]. Journal of Basic Engineering, 1970, 92(3): 467-482. [49] Yaras M I, Sjolander S A. Prediction of Tip-Leakage Losses in Axial Turbines[J]. Journal of Turbomachinery, 1992, 114(1): 204-210. [50] Kim B N. A Numerical Study on Flow and Heat Transfer and Development of Tip-Leakage Loss and Broadband Noise Model for Axial Flow Turbomachinery Tip Gaps[D]. Daejeon: Korea Advanced Institute of Science and Technology, 1996. [51] Kim B N, Chung M K. Improvement of Tip Leakage Loss Model for Axial Turbines[J]. Journal of Turbomachinery, 1997, 119(2): 399-401. [52] 张宗辰, 杜睆实, 付海涛, 等. 非设计攻角对涡轮叶片叶型损失的影响特点分析[J]. 重庆理工大学学报(自然科学), 2017, 31(11): 109-116. [53] Jouini D B M, Sjolander S A, Moustapha S H. Midspan Flow-Field Measurements for Two Transonic Linear Turbine Cascades at Off-Design Conditions[J]. Journal of Turbomachinery, 2002, 124(2): 176-186. [54] 翁史烈. 燃气轮机性能分析[M]. 上海:上海交大出版社, 1987. [55] 万 欣. 燃气叶轮机械[M]. 北京:机械工业出版社, 1987. [56] Zehner P. Calculation of Four-Quadrant Characteristics of Turbines[R]. ASME 80-GT-2. [57] Moustapha S H, Kacker S C, Tremblay B. An Improved Incidence Losses Prediction Method for Turbine Airfoils[R]. ASME 89-GT-284. [58] Benner M W, Sjolander S A, Moustapha S H. Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation[J]. Journal of Turbomachinery, 1997, 119(2): 193. [59] 黄庆南, 刘泽秋, 朱铭福, 等. 航空发动机设计手册: 涡轮(第10册)[M]. 北京: 航空工业出版社, 2001. [60] 刘 超. 航空涡轮损失预估方法研究[D]. 南京: 南京航空航天大学, 2013. [61] Hong Y S, Groh F G. Axial Turbine Loss Analysis and Efficiency Prediction Method[R]. Boeing Co Seattle Wa Turbine Div D4-3220, 1966. [62] Behera A K, Choudhary T, Kumar P. A Review on Turbine Design and Optimization―A State of Art II[J]. Certified Journal, 2014, 4(2): 881-884. [63] 孙大伟. 高压涡轮二次流机理、损失模型及控制技术研究[D]. 西安: 西北工业大学, 2009. [64] Denton J D. The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656. [65] Benner M W, Sjolander S A, Moustapha S H. An Empirical Prediction Method for Secondary Losses in Turbines, Part II: a New Secondary Loss Correlation[J]. Journal of Turbomachinery, 2006, 128(2): 281-291. [66] Benner M W, Sjolander S A, Moustapha S H. An Empirical Prediction Method for Secondary Losses in Turbines, Part I: a New Loss Breakdown Scheme and Penetration Depth Correlation[J]. Journal of Turbomachinery, 2006, 128(2): 273-280. [67] Coull J D, Hodson H P. Predicting the Profile Loss of High-Lift Low Pressure Turbines[J]. Journal of Turbomachinery, 2012, 134(2). [68] Baturin O V, Popov G M, Kolmakova D A, et al. The Best Model for the Calculation of Profile Losses in the Axial Turbine[J]. Journal of Physics: Conference Series, 2017, 803(1). [69] Baturin O, Kolmakova D. Development of A New Equations Describing Profile Losses in Axial Turbine Blade Row[C]. Samara: IOP Conference Series: Materials Science and Engineering, 2018. [70] Zhu J, Sjolander S A. Improved Profile Loss and Deviation Correlations for Axial-Turbine Blade Rows[R]. ASME GT 2005-69077. [71] Tournier J M, El-Genk M S. Axial Flow, Multi-Stage Turbine and Compressor Models[J]. Energy Conversion and Management, 2010, 51(1): 16-29. [72] Javaniyan J H, Eftari M, Shahhoseini M R, et al. A Method of Performance Estimation for Axial Flow Turbines Based on Losses Prediction[J]. Journal of Mechanical Research and Application, 2012, 4(1): 35-42. [73] Beschorner A, Vogeler K, Goldhahn E, et al. Experimental and Numerical Investigations to Extend the Validity Range of a Turbine Loss Correlation for Ultra-Low Aspect Ratios in Transonic Flow[R]. ETC10, ETC2013-085, 2013. [74] Yuan Z W, Zhang J, Zhu D S. Profile Loss Correlations for Variable Incidences[J]. Applied Mechanics and Materials, 2014, 577: 527-530. [75] 倪林森, 陈 榴, 戴 韧. 多级轴流透平流动损失结构与损失模型的修正[J]. 工程热物理学报, 2016(12): 78-84. [76] 侯伟涛, 潘贤德, 张 洪, 等. 高压涡轮气冷叶片冷却掺混损失数值研究[J]. 推进技术, 2018, 39(2): 342-350. [77] Hartsel J. Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils[C]. San Diego: 10th Aerospace Sciences Meeting, 1972. [78] Walters D K, Leylek J H. Impact of Film-Cooling Jets on Turbine Aerodynamic Losses[J]. Journal of Turbomachinery, 2000, 122(3): 537-545. [79] Ito S, Eckert E R G, Goldstein R J. Aero-dynamic Loss in a Gas Turbine Stage with Film Cooling[J]. Journal of Engineering for Power Transactions, 1980, 102(4): 964-970. [80] 许开富, 乔渭阳, 伊进宝, 等. 航空燃气涡轮冷气掺混流动损失的数值研究[J]. 航空学报, 2006, 27(2): 182-186. [81] 曲 龙. 涡轮损失模型的研究及CFD验证[D]. 哈尔滨: 哈尔滨工程大学, 2013. [82] Koellen O, Koschel W. Effect of Film Cooling on the Aerodynamic Performance of a Turbine Cascade[R]. HTCG, N86-29823 21-07, 1985. [83] Lakshminarayana B. Fluid Dynamics and Heat Transfer of Turbomachinery[M]. New Jersey: John Wiley & Sons, 1995. [84] 杨 弘. 气冷涡轮叶栅效率的计算方法[J]. 航空动力学报, 1995, 10(1): 41-44. [85] Bohn D, Kim T S. Aerodynamic Loss Prediction of Axial Flow Turbine Blade Rows with Coolant Injection[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 1999, 213(2): 93-101. [86] 黄忠湖, 王月奇, 杨锦甫. 有冷气掺混的涡轮气动设计计算方法[J]. 航空动力学报, 1989, 4(4): 6-9. [87] Shapiro A H. The Dynamics and Thermo-Dynamics of Compressible Fluid Flow[M]. New Jersey: John Wiley & Sons, 1953. [88] Young J B, Wilcock R C. Modeling the Air-Cooled Gas Turbine, Part 2: Coolant Flows and Losses[J]. Journal of Turbomachinery, 2002, 124(2): 214-221. [89] Lim C H, Pullan G, Northall J. Estimating the Loss Associated with Film Cooling for a Turbine Stage[J]. Journal of Turbomachinery, 2012, 134(2). [90] Cha C M. The Dissipation Function-Based Efficiency for Turbomachinery: Part 1—The Efficiency of a Cooled Turbine Row[R]. ASME GT 2014-26656. [91] Cha C M. The Dissipation Function-Based Efficiency for Turbomachinery, Part 2: The Power of a Cooled Turbine[R]. ASME GT 2015-42660. [92] Cha C M, Kramlich J C. Modeling Finite-Rate Mixing Effects in Reburning Using a Simple Mixing Model[J]. Combustion and Flame, 2000, 122(1-2): 151-164. [93] Mcvetta A, Giel P, Welch G. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade[C]. Atlanta: AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013. [94] Flegel A B. Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade[R]. ASME GT 2013-94695. [95] Flegel A B, Giel P W, Welch G E. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations[C]. Cleveland: AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. [96] Teia L. New Insight into Aspect Ratio's Effect on Secondary Losses of Turbine Blades[J]. Journal of Turbomachinery, 2019, 141(11). [97] Torre D, Garcia-Valdecasas G, Cadrecha D. The Effect of Turning Angle on the Loss Generation of LP Turbines[R]. ASME GT 2017-64582. [98] 梁 晨, 牛夕莹, 林 枫, 等. 动力涡轮整体三维流场分析和验证[J]. 舰船科学技术, 2010, 32(8): 92-97. [99] Corriveau D, Sjolander S A. Aerodynamic Performance of a Family of Three High Pressure Transonic Turbine Blades at Off-Design Incidence[R]. ASME GT 2005-68159. [100] Melzer A P, Pullan G. The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades[J]. Journal of Turbomachinery, 2019, 141(4). [101] Cui J, Rao V N, Tucker P G. Numerical Investigation of Secondary Flows in a High-Lift Low Pressure Turbine[J]. International Journal of Heat and Fluid Flow, 2017, 63: 149-157. [102] 陈志涯, 詹杰民, 龚也君, 等. 气膜孔的位置对涡结构和气膜冷却效率的影响[J]. 汽轮机技术, 2019, 61(1): 29-32. [103] Gr?f L, Kleiser L. Film Cooling Using Antikidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses[J]. Journal of Turbomachinery, 2014, 136(1). [104] Simoni D, Berrino M, Ubaldi M, et al. Off-Design Performance of a Highly Loaded Low-Pressure Turbine Cascade under Steady and Unsteady Incoming Flow Conditions[J]. Journal of Turbomachinery, 2015, 137(7). [105] 屈 骁, 张燕峰, 卢新根, 等. 上游尾迹对高负荷低压涡轮非定常气动性能的影响[J]. 工程热物理学报, 2019, 40(9): 2004-2011. [106] Davide L, Simoni D, Ubaldi M, et al. Coherent Structures Formation During Wake-Boundary Layer Interaction on a LP Turbine Blade[J]. Flow, Turbulence and Combustion, 2017, 98(1): 57-81. [107] Zhao B, Qi M, Sun H, et al. Experimental and Numerical Investigation on the Shock Wave Structure Alterations and Available Energy Loss Variations with a Grooved Nozzle Vane[J]. Journal of Turbomachinery, 2019, 141(5). [108] Shi Liu-liu, Yao Shi-chuan, Xuan Li-ming, et al. Experimental and Numerical Investigation of the Wake Structure and Aerodynamic Loss of Trailing Edge Jet[J]. Journal of Mechanical Science and Technology, 2018, 32(5): 2039-2046. [109] 邹正平, 叶 建, 刘火星, 等. 低压涡轮内部流动及其气动设计研究进展[J]. 力学进展, 2007, (4): 551-562. [110] Bons J P, Pluim J, Gompertz K, et al. The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade with Unsteady Wakes[J]. Journal of Turbomachinery, 2012, 134(3). |
[1] | 王嘉辉,张华良,尹钊,李文,陈海生,汤洪涛. 轴流涡轮损失模型研究进展(“两机”专刊)*[J]. 推进技术, 2021, 42(1): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部