推进技术 ›› 2021, Vol. 42 ›› Issue (4): 851-864.DOI: 10.13675/j.cnki.tjjs.200259
覃建秀,杨武兵
出版日期:
2021-04-15
发布日期:
2021-04-15
Online:
2021-04-15
Published:
2021-04-15
摘要: 对斜爆震波起爆特性及其波系结构的研究进展进行综合评述,分析其研究现状与存在的不足,总结了斜爆震波起爆和驻定特性研究进展,重点回顾了斜爆震波起爆准则和驻定条件,对斜爆震波的诱导区结构和波面胞格结构研究进行了总结,对斜劈构型对斜爆震波的影响研究现状进行了概述。综述表明,斜爆震波的起爆、驻定和波系结构还需持续开展研究,特别需要关注的是平面斜爆震波的起爆准则和驻定条件,在真实流动条件下更深入研究斜爆震波宏观结构和波面结构的形成机理,探索受限空间内斜爆震波起爆、反射和驻定特性。
覃建秀,杨武兵. 斜爆震波起爆特性及其波系结构研究[J]. 推进技术, 2021, 42(4): 851-864.
QIN Jian-xiu, YANG Wu-bing. Research Progress on Initiation Characteristics and Structure of Oblique Detonation Waves[J]. Journal of Propulsion Technology, 2021, 42(4): 851-864.
[1] Wolanski P. Detonative Propulsion[J]. Proceeding of the Combustion Institute, 2013, 34(1): 125-158. [2] 袁生学, 黄志澄. 自持斜爆轰的特性和实验观察[J]. 宇航学报, 1995, 16(2): 90-93. [3] 袁生学, 黄志澄. 高超声速发动机不同燃烧模式的性能比较——斜爆轰发动机性能评价[J]. 空气动力学学报, 1995, 13(1): 48-56. [4] Axdahl E L. A Study of Premixed, Shock-Induced Combustion with Application to Hypervelocity Flight[D]. Atlanta: Georgia Institute of Technology, 2013. [5] Alexandrov V G, Kraiko A N, Reent K S. Determination of the Integral and Local Characteristics of Supersonic Pulsed Detonation Ramjet Engine(SPDRE)[R]. AIAA 2001-1788. [6] Huang W, Qin H, Luo S B, et al. Research Status of Key Techniques for Shock-Induced Combustion Ramjet (shcramjet) Engine[J]. Science China Technological Sciences, 2010, 53(1): 220-226. [7] Zeldovich Y B, Leipunsky O. A Study of Chemical Reactions in Shock Waves[J]. Journal of Experimental and Theoretical Physics, 1943, 18: 167-171. [8] Lehr H F. Experiment on Shock-Induced Combustion[J]. Astronautica Acta, 1972, 17(4-5): 589-597. [9] Mcvey J B, Toong T Y. Mechanism of Instabilities of Exothermic Hypersonic Blunt-Body Flows[J]. Combustion Science and Technology, 1971, 3: 63-76. [10] Matsuo A, Fujii K. Detailed Mechanism of the Unsteady Combustion Around Hypersonic Projectiles[J]. AIAA Journal, 1996, 34(10): 2082-2089. [11] Kasahara J, Horri T, Endo T, et al. Experimental Observation of Unsteady H2-O2 Combustion Phenomena Around Hypersonic Projectiles Using a Multiframe Camera[J]. Symposium on Combustion, 1996, 26(2): 2903-2908. [12] Vasiljev A A. Initiation of Gaseous Detonation by a High Speed Body[J]. Shock Waves, 1994, 3(4): 321-326. [13] Lee J H. Initiation of Detonation by a Hypervelocity Projectile[J]. Progress in Astronauties and Aeronautics, 1997, 173: 293-310. [14] Higgins A J, Bruckner A P. Experimental Investigation of Detonation Initiation by Hypervelocity Blunt Projectiles[R]. AIAA 96-0342. [15] Ju Y, Masuya G, Sasoh A. Numerical and Theoretical Studies on Detonation Initiation by a Supersonic Projectile[J]. Symposium on Combustion, 1998, 27(2): 2225-2231. [16] Verreault J, Higgins A J. Initiation of Detonation by Conical Projectiles[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2311-2318. [17] Sturtzer M O, Togami G, Seiler F. Detonation Wave Generated by a Hypervelocity Projectile[J]. Heat Transfer Research, 2007, 38(4): 291-297. [18] Kasahara J, Arai T, Matsuo A, et al. Experimental Investigations of Steady-State Oblique Detonation Waves Generated Around Hypersonic Projectiles[R]. AIAA 2001-1800. [19] Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet Oblique Detonation Structure Around Hypersonic Projectiles[J]. AIAA Journal, 2001, 39(8): 1553-1561. [20] 柳 森, 简和祥, 白智勇, 等. 37mm冲压加速器试验和计算[J]. 力学学报, 1999, 31(4): 450-455. [21] 柳 森, 简和祥, 白智勇, 等. 37mm冲压加速器热发射试验初步结果[J]. 流体力学实验与测量, 1999, 13(3): 32-36. [22] 崔东明, 范宝春, 邢晓江. 驻定在高速弹丸上的斜爆轰波[J]. 爆炸与冲击, 2002, 22(3): 263-266. [23] Kangshige M J, Shepherd J E. Oblique Detonation Stabilized on a Hypervelocity Projectile[J]. Symposium on Combustion, 1996, 26(2): 3015-3022. [24] Kasahara J, Aria T, Chiba S, et al. Criticality for Stabilized Oblique Detonation Waves Around Spherical Bodies in Acetylene/Oxygen/Krypton Mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2817-2824. [25] Maeda S, Inada R, Kasahara J, et al. Visualization of the Non-Steady State Oblique Detonation Wave Phenomena Around Hypersonic Spherical Projectile[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2343-2349. [26] Maeda S, Kasahara J, Matsuo A. Oblique Detonation Wave Stability Around a Spherical Projectile by a High Time Resolution Optical Observation[J]. Combustion and Flame, 2012, 159: 887-896. [27] Maeda S, Sumiya S, Kasahara J, et al. Initiation and Sustaining Mechanisms of Stabilized Oblique Detonation Waves Around Projectiles[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1973-1980. [28] Maeda S, Sumiya S, Kasahara J, et al. Scale Effect of Spherical Projectiles for Stabilization of Oblique Detonation Waves[J]. Shock Waves, 2015, 25: 141-150. [29] 方宜申, 胡宗民, 腾宏辉, 等. 圆球诱发斜爆轰波的数值研究[J]. 力学学报, 2017, 2(49): 268-273. [30] Pratt D T, Humphrey J W, Glenn D E. Morphology of Standing Oblique Detonation Waves[J]. Journal of Propulsion and Power, 1991, 7(5): 837-845. [31] Ashford S A, Emanuel G. Wave Angle for Oblique Detonation Waves[J]. Shock Waves, 1994, 3: 327-329. [32] Verreault J, Higgins A J, Stowe R A. Formation and Structure of Steady Oblique and Conical Detonation Waves[J]. AIAA Journal, 2012, 50(8): 1766-1772. [33] Ghorbanian K, Sterling J D. Influence of Formation Processes on Oblique Detonation Wave Stabilization[J]. Journal of Propulsion and Power, 1966, 12(3): 509-517. [34] 崔东明, 范宝春. 用于推进的驻定斜爆轰的基本特征[J]. 宇航学报, 1999, 20(2): 48-54. [35] Dabora E K, Nicholls J A, Morrison R B. The Influence of a Compressible Boundary on the Propagation of Gaseous Detonations[J]. Symposium on Combustion, 1965, 10(1): 817-830. [36] Broda J C. An Experimental Study of Oblique Detonation Waves[D]. Storrs: The University of Connecticut, 1993. [37] Viguier C, Figueira Da Silva L F, Desbordes D, et al. Onset of Oblique Detonation Waves: Comparison Between Experimental and Numerical Results for Hydrogen-Air Mixture[J]. Symposium on Combustion, 1996, 26(2): 3023-3031. [38] Srulijes J, Smeets G, Seiler F. Expansion Tube Experiments for the Investigation of Ram-Accelerator-Related Combustion and Gasdynamic Problems[R]. AIAA 92-3246. [39] Kamel M R, Morris C I, Stouklov I G, et al. PLIF Imaging of Hypersonic Reactive Flow Around Blunt Bodies[J]. Symposium on Combustion, 1996, 26(2): 2909-2915. [40] Morris C I, Kamel M R, Ben-Yakar A, et al. Combined Schlieren and OH PLIF Imaging Study of Ram Accelerator Flowfields[R]. AIAA 98-0244. [41] Morris C I, Kamel M R, Hanson R K. Shock-Induced Combustion in High-Speed Wedge Flows[J]. Symposium on Combustion, 1998, 27(2): 2157-2164. [42] Choi J Y, Jeung I S, Yoon Y. Computational Investigation of Structure and Dynamics of Oblique Detonation at Off-Attaching Condition[C]. Southampton: Proceedings of the 22nd International Symposium on Shock Waves, 1999. [43] 袁生学, 赵 伟, 黄志澄. 驻定斜爆轰波的初步实验观察[J]. 空气动力学学报, 2000, 18(4): 473-477. [44] 林志勇. 高静温超声速预混气爆震起爆与发展过程机理研究[D]. 长沙: 国防科技大学, 2008. [45] 韩 旭. 超声速预混气中爆震波起爆与传播机理研究[D]. 长沙: 国防科技大学, 2013. [46] Gong J S, Zhang Y N, Pan H, et al. Experimental Investigation on Initiation of Oblique Detonation Waves[R]. AIAA 2017-2350. [47] 刘云峰, 汪运鹏, 苑朝凯, 等. JF12长实验时间激波风洞10°尖锥气动力实验研究[J]. 气体物理, 2017, 2(2): 1-7. [48] 姚轩宇, 王 春, 喻 江, 等. JF12激波风洞高Mach数超燃冲压发动机实验研究[J]. 气体物理, 2019, 4(5): 25-31. [49] 卢洪波, 陈星, 君谋, 等. 新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验[J]. 气体物理, 2019, 4(5): 13-24. [50] Li C, Kailasanath K, Oran E S. Detonation Structures behind Oblique Shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611. [51] Viguier C, Gourara A, Desbordes D. Three-Dimensional Structure of Stabilization of Oblique Detonation Wave in Hypersonic Flow[J]. Symposium on Combustion, 1998, 27(2): 2207-2214. [52] Vlasenko V V, Sabel'nikov V A. Numerical Simulation of Inviscid Flows with Hydrogen Combustion Behind Shock Waves and in Detonation Waves[J]. Combustion, Explosion, and Shock Wave, 1995, 31(3): 376-389. [53] Silva Da Figueira L F, Deshaies B. Stabilization of an Oblique Detonation Wave by a Wedge: A Parameter Numerical Study[J]. Combustion and Flame, 2000, 121(1): 152-166. [54] Wang A F, Zhao W, Jiang Z L. The Criterion of the Existence or Inexistence of Transverse Shock Wave at Wedge Supported Oblique Detonation Wave[J]. Acta Mechanism Sinica, 2011, 27(5): 611-619. [55] Teng H H, Jiang Z L. On the Transition Pattern of the Oblique Detonation Structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669. [56] Qin Q Y, Zhang X B. Study on the Transition Patterns of the Oblique Detonation Wave with Varying Temperature of the Hydrogen-Air Mixture[J]. Fuel, 2020, 274: 1-10. [57] Miao S K, Zhou J, Liu S J, et al. Formation Mechanism and Characteristics of Transition Patterns in Oblique Detonations[J]. Acta Astronautica, 2018, 142: 121-129. [58] Liu Y, Wang L, Xiao B G, et al. Hysteresis Phenomenon of the Oblique Detonation Wave[J]. Combustion and Flame, 2018, 192: 170-179. [59] Teng H H, Zhang Y N, Jiang Z L. Numerical Investigation on the Induction Zone Structure of the Oblique Detonation Waves[J]. Computers & Fluids, 2014, 95: 127-131. [60] 刘 岩, 武 丹, 王健平. 低马赫数下斜爆震波的结构[J]. 爆炸与冲击, 2015, 35(2): 203-207. [61] Liu Y, Wu D, Yao S B, et al. Analytical and Numerical Investigations of Wedge-Induced Oblique Detonation Waves at Low Inflow Mach Number[J]. Combustion Science and Technology, 2015, 187(6): 843-856. [62] Liu Y, Liu Y S, Wu D, et al. Structure of an Oblique Detonation Wave Induced by a Wedge[J]. Shock Waves, 2016, 26: 161-168. [63] Yang P F, Teng H H, Jiang Z L, et al. Effects of Inflow Mach Number on Oblique Detonation Initiation with a Two-Step Induction-Reaction Kinetic Model[J]. Combustion and Flame, 2018, 193: 246-256. [64] 戴 琪, 金 台, 罗 坤, 等. 驻定斜爆轰波起爆条件与结构的数值模拟研究[J]. 推进技术, 2018, 39(10): 2357-2362. [65] Teng H H, Yang P F, Jiang Z L. Numerical Study of Oblique Detonation Initiations with Chain Branching Kinetics[R]. AIAA 2017-1287. [66] Teng H H, Ng H D, Jiang Z. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36: 2735-2742. [67] Wang T, Zhang Y N, Teng H H, et al. Numerical Study of Oblique Detonation Wave Initiation in a Stoichiometric Hydrogen-Air Mixture[J]. Physics of Fluid, 2015, 27: 27-39. [68] Zhang Y N, Gong J S, Wang T. Numerical Study on Initiation of Oblique Detonation in Hydrogen-Air Mixtures with Various Equivalence Ratios[J]. Aerospace Science and Technology, 2016, 49: 130-134. [69] 陈 楠, Esfehani S A, Bhattrai S, 等. 当量比对斜爆震波诱导区特性影响的数值模拟研究[J]. 推进技术, 2018, 39(12): 2798-2805. [70] Fang Y S, Hu Z M, Teng H H, et al. Numerical Study of Inflow Equivalence Ratio Inhomogeneity on Oblique Detonation Formation in Hydrogen-Air Mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263. [71] Iwata K, Nakaya S, Tsue M. Wedge-Stabilized Oblique Detonation in an Inhomogeneous Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36: 2761-2769. [72] Tian C, Teng H H, Ng H D. Numerical Investigation of Oblique Detonation Structure in Hydrogen-Oxygen Mixtures with Ar Dilution[J]. Fuel, 2019, 252: 496-503. [73] Zhang Y H, Fang Y S, Ng H D, et al. Numerical Investigation on the Initiation of Oblique Detonation Waves in Stoichiometric Acetylene-Oxygen Mixtures with High Argon Dilution[J]. Combustion and Flame, 2019, 204: 391-396. [74] Fang Y S, Zhang Y H, Deng X, et al. Structure of Wedge-Induced Oblique Detonation in Acetylene-Oxygen-Argon Mixtures[J]. Physics of Fluids, 2019, 31: 1-8. [75] Li C, Kailasanath K, Oran E S. Effects of Boundary Layers on Oblique-Detonation Structures[R]. AIAA 93-0450. [76] 王爱峰, 腾宏辉, 赵 伟, 等. 边界层对驻定斜爆轰结构和稳定性的影响[J]. 科学技术与工程, 2013, 13(23): 6781-6787. [77] 刘 彧, 周 进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波[J]. 物理学报, 2014, 63(20): 221-228. [78] Yu M Y, Miao S K. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in Turbulence Flows[J]. Acta Astronautica, 2018, 147: 195-204. [79] Fang Y S, Zhang Z J, Hu Z M. Effects of Boundary Layer on Wedge-Induced Oblique Detonation Structures in Hydrogen-Air Mixtures[J]. International Journal of Hydrogen Energy, 2019, 44: 23429-23435. [80] 王爱峰, 赵 伟, 姜宗林. 斜爆轰的胞格结构及横波传播[J]. 爆炸与冲击, 2010, 30(4): 349-354. [81] 归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素[J]. 推进技术, 2012, 33(3): 490-494. [82] Gui M, Fan B. Wavelet Structure of Wedge-Induced Oblique Detonation Waves[J]. Combustion Science and Technology, 2012, 184(10-11): 1456-1470. [83] Verreault J, Higgins A J, Stowe R A. Formation of Transverse Waves in Oblique Detonations[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1913-1920. [84] Teng H H, Jiang Z L, Ng H D. Numerical Study on Unstable Surfaces of Oblique Detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128. [85] Grismer M J, Powers J M. Numerical Predictions of Oblique Detonation Stability Boundaries[J]. Shock Waves, 1996, 6(3): 147-156. [86] Teng H H, Ng H D, Li K, et al. Evolution of Cellular Structures on Oblique Detonation Surfaces[J]. Combustion and Flame, 2015, 162(2): 470-477. [87] Choi J Y, Kim D W, Jeung I S, et al. Cell-Like Structure of Unstable Oblique Detonation Wave from High-Resolution Numerical Simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2473-2480. [88] Zhang Y N, Zhou L, Gong J S, et al. Effects of Activation Energy on the Instability of Oblique Detonation Surfaces with a One-Step Chemistry Model[J]. Physics of Fluids, 2018, 30(10). [89] Yang P F, Teng H H, Ng H D, et al. A Numerical Study on the Instability of Oblique Detonation Waves with a Two-Step Induction-Reaction Kinetic Model[J]. Proceedings of the Combustion Institute, 2019, 37: 3537-3544. [90] Zhang Y N, Yang P F, Teng H H, et al. Transition Between Different Initiation Structures of Wedge-Induced Oblique Detonations[J]. AIAA Journal, 2018, 56(10): 4016-4023. [91] Fusina G, Sislian J P, Parent B. Formation and Stability of near Chapman-Jouguet Standing Oblique Detonation Waves[J]. AIAA Journal, 2005, 43(7): 1591-1604. [92] Miao S K, Zhou J, Lin Z Y, et al. Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves[J]. AIAA Journal, 2018, 56(8): 3112-3122. [93] 陈 楠, Bhattrai S, 唐 豪. 温度扰动对ODW结构影响的数值模拟[J]. 北京航空航天大学学报, 2018, 44(7): 1537-1546. [94] Yang P F, Ng H D, Teng H H. Numerical Study of Wedge-Induced Oblique Detonations in Unsteady Flow[J]. Journal of Fluid Mechanism, 2019, 876: 264-287. [95] Choi J Y, Shin E J R, Jeung I S. Unstable Combustion Induced by Oblique Shock Waves at the Non-Attaching Condition of the Oblique Detonation Wave[J]. Proceedings of the Combustion Institute, 2009, 32: 2387-2396. [96] Papalexandris M V. A Numerical Study of Wedge-Induced Detonations[J]. Combustion and Flame, 2000, 120: 526-538. [97] Walter M A T, Silva L F F. Numerical Study of Detonation Stabilization by Finite Length Wedges[J]. AIAA Journal, 2006, 44(2): 353-361. [98] Liu Y, Han X, Yao X, et al. A Numerical Investigation of the Prompt Oblique Detonation Wave Sustained by a Finite-Length Wedge[J]. Shock Waves, 2016, 26(6): 729-739. [99] Fang Y S, Hu Z M, Teng H H. Numerical Investigation of Oblique Detonations Induced by a Finite Wedge in a Stoichiometric Hydrogen-Air Mixture[J]. Fuel, 2018, 234: 502-507. [100] Xiang G X, Li X D, Sun X F, et al. Investigations on Oblique Detonations Induced by a Finite Wedge in High Altitude[J]. Aerospace Science and Technology, 2019, 95: 1-6. [101] Xiang G X, Li X D, Cao R H, et al. Study of the Features of Oblique Detonation Induced by a Finite Wedge in Hydrogen-Air Mixtures with Varying Equivalence Ratios[J]. Fuel, 2020, 264: 1-7. [102] Lu F K, Fan H, Wilson D R. Detonation Waves Induced by a Confined Wedge[J]. Aerospace Science and Technology, 2006, 10(8): 679-685. [103] Bhattrai S, Tang H. Formation of near-Chapman-Jouguet Oblique Detonation Wave over a Dual-Angle Ramp[J]. Aerospace Science and Technology, 2017, 63: 1-8. [104] Bomjan B, Bhattrai, Tang H. Characterization of Induction and Transition Methods of Oblique Detonation Waves over Dual-Angle Wedge[J]. Aerospace Science and Technology, 2018, 82-83: 394-401. [105] Qin Q Y, Zhang X B. Study on the Effects of Geometry on the Initiation Characteristics of the Oblique Detonation Wave for Hydrogen-Air Mixture[J]. International Journal of Hydrogen Energy, 2019, 44: 17004-17014. [106] Qin Q Y, Zhang X B. A Novel Method for Trigger Location Control of the Oblique Detonation Wave by a Modified Wedge[J]. Combustion and Flame, 2018, 197: 65-77. [107] Fang Y S, Zhang Z J, Hu Z M, et al. Initiation of Oblique Detonation Waves Induced by Blunt Wedge in Stoichiometric Hydrogen-Air Mixtures[J]. Aerospace Science and Technology, 2019, 92: 676-684. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部