推进技术 ›› 2020, Vol. 41 ›› Issue (9): 2143-2160.DOI: 10.13675/j.cnki.tjjs.200292
• 材料 推进剂 燃料 • 上一篇
陈西辉1,2,孙志刚1,2,牛序铭1,2,江荣1,2,高希光1,2,宋迎东1,2,3
出版日期:
2020-09-15
发布日期:
2020-09-15
作者简介:
陈西辉,博士生,研究领域为陶瓷基复合材料结构失效分析。E-mail:cxh123@nuaa.edu.cn
基金资助:
Online:
2020-09-15
Published:
2020-09-15
摘要: 从SiC/SiC复合材料氧化行为、氧化环境下的失效机理与力学性能三个方面,对SiC/SiC复合材料氧化退化的研究进展进行了综述。文中总结了影响材料氧化行为的重要因素,包括温度、氧分压、水蒸汽以及界面层厚度等。详细分析了材料在不同温度范围内的失效机制,即氧化脆化是SiC/SiC复合材料在中温范围内的重要失效机制,材料在高温下的失效主要是由纤维强度退化、蠕变及界面氧化引起的。总结出:界面氧化消耗、纤维性能退化是引起材料力学性能退化的关键因素,指出了目前研究中存在的问题和发展方向。
陈西辉,孙志刚,牛序铭,江荣,高希光,宋迎东.
CHEN Xi-hui1,2, SUN Zhi-gang1,2, NIU Xu-ming1,2, JIANG Rong1,2, GAO Xi-guang1,2, SONG Ying-dong1,2,3. Research Progress of Oxidation Degradation of SiC/SiC Composites[J]. Journal of Propulsion Technology, 2020, 41(9): 2143-2160.
[1] 邹 豪, 王 宇, 刘 刚, 等. 碳化硅纤维增韧碳化硅陶瓷基复合材料的发展现状及其在航空发动机上的应用[J]. 航空制造技术, 2017, 60(15): 76-84. [2] 邱海鹏, 陈明伟, 谢巍杰. SiC/SiC陶瓷基复合材料研究及应用[J]. 航空制造技, 2015, 483(14): 94-97. [3] Naslain R. Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: an Overview[J]. Composites Science & Technology, 2004, 64(2): 155-170. [4] 陈明伟, 谢巍杰, 邱海鹏. 连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2016, 37(6): 393-402. [5] 王 鸣, 董志国, 张晓越, 等. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用[J]. 航空制造技术, 2014, 450(6): 10-13. [6] Corman G, Upadhyay R, Sinha S, et al. General Electric Company: Selected Applications of Ceramics and Composite Materials[M]. Cham: Springer International Publishing, 2016. [7] Corman G, Luthra K. Silicon Melt Infiltrated Ceramic Composites (HiPerCompTM)[M]. Cham: Springer, 2005. [8] DiCarlo J A. Advances in SiC-SiC Composites for Aero-Propulsion[M]. Hoboken: John Wiley & Sons, 2015. [9] 黄璇璇, 郭双全, 姚改成, 等. 航空发动机SiC/SiC复合材料环境障碍涂层研究进展[J]. 航空维修与工程, 2017, (2): 28-31. [10] Ruggles-Wrenn M B, Jones T P. Tension-Compression Fatigue of a SiC/SiC Ceramic Matrix Composite at 1200℃ in Air and in Steam[J]. International Journal of Fatigue, 2013, 47: 154-160. [11] Ruggles-Wrenn Marina, Boucher N, Przybyla C. Fatigue of Three Advanced SiC/SiC Ceramic Matrix Composites at 1200℃ in Air and in Steam[J]. International Journal of Applied Ceramic Technology, 2018, 15(1): 3-15. [12] Hay R S, Chater R J. Oxidation Kinetics Strength of Hi-NicalonTM-S SiC Fiber after Oxidation in Dry and Wet Air[J]. Journal of the American Ceramic Society, 2017, 100(9): 4110-4130. [13] 朱强强, 范金娟, 邬冠华. Cf/SiC复合材料的氧化及抗氧化技术研究进展[J]. 失效分析与预防, 2018, 13(1): 55-59. [14] Filipuzzi L, Camus G, Naslain R, et al. Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials, I: An Experimental Approach[J]. Journal of the American Ceramic Society, 1994, 77(2): 459-466. [15] Opila E J, Serra J L. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures[R]. NASA E-17512, 2007. [16] Chateau C, Gélébart L, Bornert M, et al. In Situ X-Ray Microtomography Characterization of Damage in SiCf/SiC Minicomposites[J]. Composites Science & Technology, 2011, 71(6): 916-924. [17] Lamouroux F, Gérald C, Jacques T. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites, I: Experimental Approach[J]. Journal of the American Ceramic Society, 1994, 77(8): 2049-2057. [18] Sun Z, Shao H, Niu X, et al. Simulation of Mechanical Behaviors of Ceramic Composites under Stress-Oxidation Environment While Considering the Effect of Matrix Cracks[J]. Applied Composite Materials, 2016, 23(3): 477-494. [19] Filipuzzi L, Naslain R. Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials, II: Modeling[J]. Journal of the American Ceramic Society, 1994, 77(2): 467-480. [20] 殷小玮. 3D C/SiC复合材料的环境氧化行为[D]. 西安: 西北工业大学, 2001. [21] Naslain R, Guette A, Rebillat F, et al. Oxidation Mechanisms and Kinetics of SiC-Matrix Composites and Their Constituents[J]. Journal of Materials Science, 2004, 39(24): 7303-7316. [22] Cao S, Wang J, Wang H. Effect of Heat Treatment on the Microstructure and Tensile Strength of KD-Ⅱ SiC Fibers[J]. Materials Science and Engineering A, 2016, 673(15): 55-62. [23] Kleykamp H, Schauer V, Skokan A. Oxidation Behaviour of SiC Fibre Reinforced SiC[J]. Journal of Nuclear Materials, 1995, 227(1-2): 130-137. [24] Cheng Lai-fei, Xu Yong-dong, Zhang Li-tong. Oxidation Behavior of Three-Dimensional SiC/SiC Composites in Air and Combustion Environment[J]. Composites Part A Applied Science & Manufacturing, 2000, 31(9): 1015-1020. [25] Wu S, Cheng L, Zhang L. Oxidation Behavior of 3D Hi-Nicalon/SiC Composite[J]. Materials Letters, 2006, 60(25/26): 3197-3201. [27] Wu S, Cheng L, Zhang L. Oxidation Behavior of 3D Hi-Nicalon/SiC Composite Exposed in Wet and Simulated Air Environments[J]. Corrosion Science, 2013, 66: 111-117. [28] Fox D S, Nguyen Q N. Oxidation Kinetics of Enhanced SiC/SiC[M]. New York: John Wiley & Sons, Inc. 2008. [29] 吴守军. 3D SiC/SiC复合材料热化学环境行为[D]. 西安: 西北工业大学, 2006. [30] Terrani K A, Pint B A, Parish C M, et al. Silicon Carbide Oxidation in Steam up to 2MPa[J]. Journal of the American Ceramic Society, 2014, 97(8): 2331-2352. [31] Sheldon B, Sun E, Nutt S, et al. Oxidation of BN-Coated SiC Fibers in Ceramic Matrix Composites[J]. Journal of the American Ceramic Society, 1996, 79(2): 539-543. [32] Jacobson N, Fox D, Opila E. High Temperature Oxidation of Ceramic Matrix Composites[J]. Pure and Applied Chemistry, 1998, 70 (2): 493-500. [33] Nasiri N A, Patra N, Ni N, et al. Oxidation Behaviour of SiC/SiC Ceramic Matrix Composites in Air[J]. Journal of the European Ceramic Society, 2016, 36(14): 3293-3302. [34] Jacobson N S, Morscher G N, Bryant D R, et al. High-Temperature Oxidation of Boron Nitride, II: Boron Nitride Layers in Composites[J]. Journal of the American Ceramic Society, 1999, 82(6): 1473-1482. [35] Mohan A, Udayakumar A, Gandhi A S. High Temperature Oxidation Behaviour of CVD β-SiC Seal Coated SiCf/SiC Composites in Static Dry Air and Combustion Environment[J]. Ceramics International, 2017, 43(12): 9472-9480. [36] Chen Xi-hui, Sun Zhi-gang, Li Hongyu, et al. Modeling the Effect of Oxidation on the Residual Tensile Strength of SiC/SiC Minicomposites in Stressed Oxidizing Environments[J]. Journal of Materials Science, 2020, 55, 3388-3407. [37] 张 杰, 魏 鑫, 郑力铭, 等. C/SiC复合材料在空气中的氧化烧蚀[J]. 推进技术, 2008, 29(4): 106-111. [38] Lamouroux F, Naslain R. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites, II: Theoretical Approach[J]. Journal of the American Ceramic Society, 1994, 77(8): 2058-2068. [39] Viricelle J P, Goursat P, Bahloul H D. Oxidation Behaviour of a Multi-Layered Ceramic-Matrix Composite (SiC)f /C/(SiBC)m[J]. Composites Science and Technology, 2001, 61(4): 607-614. [40] Yang H T, Lu Z L, Bie B X, et al. Microstructure and Damage Evolution of SiCf/PyC/SiC and SiCf/BN/SiC Mini-Composites: A Synchrotron X-Ray Computed Microtomography Study[J]. Ceramics International, 2019, 45(9): 11395-11402. [41] Sebire I, Gomina M, Vicens J, et al. TEM Observations of SiC-SiC Composites with a Carbon Interphase Layer Annealed in Air at High Temperatures[J]. Journal of Microscopy, 1993, 169(2): 197-205. [42] Hay R S, Fair G E, Hart A, et al. Kinetics of Passive Oxidation of Hi-Nicalon-S SiC Fibers in Wet Air: Relationships between SiO2 Scale Thickness, Crystallization, and Fiber Strength[J]. Ceramic Engineering and Science Proceedings, 2013, 33(2): 253-260. [43] Hay R S, Fair G E, Bouffioux R, et al. Hi-NicalonTM-S SiC Fiber Oxidation and Scale Crystallization Kinetics[J]. Journal of the American Ceramic Society, 2011, 94(11): 3983-3991. [44] Luo Z, Zhou X, Yu J. High-Temperature Mechanical Properties of Thermal Barrier Coated SiC/SiC Composites by PIP Process with a New Precursor Polymer[J]. Surface & Coatings Technology, 2014, 258: 146-153. [45] Jones R H, Henager C H, Simonen E P. Predicting Failure Mechanism of SiC/SiC Composites as a Function of Temperature and Oxygen Concentration[M]. Frankfurt: Wiley-VCH Verlag Gmbh & Co. Kgaa, 2006. [46] Evans A G, Zok F W, Mcmeeking R M, et al. Models of High Temperature, Environmentally Assisted Embrittlement in Ceramic-Matrix Composites[J]. Journal of the American Ceramic Society, 1996, 79(9): 2345-2352. [47] Heredia F E, Mcnulty J C, Zok F W, et al. Oxidation Embrittlement Probe for Ceramic‐Matrix Composites[J]. Journal of the American Ceramic Society, 1995, 78(8): 2097-2100. [48] Lin H T, Becher P F. Effect of Fiber Coating on Lifetime of Nicalon Fiber-Silicon Carbide Composites in Air[J]. Materials Science & Engineering: A, 1997, 231(1-2): 143-150. [49] Raghuraman S, Ferber M K, Stubbins J F, et al. Stress-Oxidation Tests in SiCf/SiC Composites[J]. Ceramic Transactions, 1994, 46: 1015-26. [50] Jones R H, Henager C H, Charles A, et al. Stress-Corrosion Cracking of Silicon Carbide Fiber/Silicon Carbide Composites[J]. Journal of the American Ceramic Society, 2000, 83(8): 1999-2005. [51] Jacques S, Marure A L, Vincent C, et al. SiC/SiC Minicomposites with Structure-Graded BN Interphases[J]. Journal of the European Ceramic Society, 2000, 20(12): 1929-1938. [52] Ogbuji L U J T. Pest-Resistance in SiC/BN/SiC Composites[J]. Journal of the European Ceramic Society, 2003, 23(4): 613-617. [53] Naslain R. SiC-Matrix Composites: Nonbrittle Ceramics for Thermo-Structural Application[J]. International Journal of Applied Ceramic Technology, 2005, 2(2): 75-84. [54] McNulty J C, He M Y, Zok F W. Notch Sensitivity of Fatigue Life in a Sylramic?/SiC Composite at Elevated Temperature[J]. Composites Science and Technology, 2001, 61(9): 1331-1338. [55] Prewo K M, Batt J A. The Oxidative Stability of Carbon Fibre Reinforced Glass-Matrix Composites[J]. Journal of Materials Science, 1988, 23(2): 523-527. [56] Mah T, Hecht N L, Mccullum D E, et al. Thermal Stability of SiC Fibres (Nicalon)[J]. Journal of Materials Science, 1984, 19(4): 1191-1201. [57] More K L, Tortorelli P F, Ferber M K, et al. Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressures[J]. Journal of the American Ceramic Society, 2000, 83(1): 211–213. [58] Henager C H, Jones R H. Subcritical Crack Growth in CVI Silicon Carbide Reinforced with Nicalon Fibers: Experiment and Model[J]. Journal of the American Ceramic Society, 1994, 77(9): 2381-2394. [59] Henager C H, Jones R H, Windisch C F, et al. Time-Dependent, Environmentally Assisted Crack Growth in Nicalon-Fiber-Reinforced SiC Composites at Elevated Temperatures[J]. Metallurgical & Materials Transactions A, 1996, 27(4): 839-849. [60] Jones R H, Henager C H, Windisch C F. High Temperature Corrosion and Crack Growth of SiC/SiC at Variable Oxygen Partial Pressures[J]. Materials Science & Engineering A, 1995, 198(1-2): 103-112. [61] Windisch C F, Henager C H, Springer G D, et al. Oxidation of the Carbon Interface in Nicalon-Fiber-Reinforced Silicon Carbide Composite[J]. Journal of the American Ceramic Society, 1997, 80(3): 569-574. [62] EerNisse E P. Viscous Flow of Thermal SiO2[J]. Applied Physics Letters, 1977, 30(6). [63] EerNisse E P. Stress in Thermal SiO2 During Growth[J]. Applied Physics Letters, 1979, 35(1): 8-10. [64] Naslain R R, Pailler R J F, Lamon J L. Single- and Multilayered Interphases in SiC/SiC Composites Exposed to Severe Environmental Conditions: An Overview[J]. International Journal of Applied Ceramic Technology, 2010, 7(3): 263-275. [65] Lamouroux F, Bertrand S, Pailler R, et al. Oxidation-Resistant Carbon-Fiber-Reinforced Ceramic-Matrix Composites[J]. Composites Science & Technology, 1999, 59(7): 1073-1085. [66] Lamouroux F, Bertrand S, Pailler R. A Multilayer Ceramic Matrix for Oxidation Resistant Carbon Fibers-Reinforced CMCs[J]. Key Engineering Materials, 1999, 164/165: 365-368. [67] Quemard L, Rebillat F, Guette A, et al. Self-Healing Mechanisms of a SiC Fiber Reinforced Multi-Layered Ceramic Matrix Composite in High Pressure Steam Environments[J]. Journal of the European Ceramic Society, 2007, 27(4): 2085-2094. [68] Ruggles-Wrenn M B, Lee M D. Fatigue Behavior of an Advanced SiC/SiC Ceramic Composite with a Self-Healing Matrix at 1300℃ in Air and in Steam[J]. Materials Science & Engineering A, 2016, 677: 438-445. [69] Mizuno M, Zhu S, Kagawa Y, et al. Stress, Strain and Elastic Modulus Behaviour of SiC/SiC Composites during Creep and Cyclic Fatigue[J]. Journal of the European Ceramic Society, 1998, 18(13): 1869-1878. [70] Mizuno M, Zhu S, Nagano Y, et al. Cyclic-Fatigue Behavior of SiC/SiC Composites at Room and High Temperatures[J]. Journal of the American Ceramic Society, 1996, 79(12): 3065-3077. [71] Evans A G, Zok F W, Mcmeeking R M. Fatigue of Ceramic Matrix Composites[J]. Acta Metallurgica et Materialia, 1995, 43(3): 859-875. [72] Xu W, Zok F W, Mcmeeking R M, et al. Model of Oxidation-Induced Fiber Fracture in SiC/SiC Composites[J]. Journal of the American Ceramic Society, 2014, 97(11): 3676-3683. [73] William H G, James D C. Stress Concentration Due to Fiber-Matrix Fusion in Ceramic-Matrix Composites[J]. Journal of the American Ceramic Society, 1998, 81(10): 2597-2604. [74] Ochiai S, Kimura S, Tanaka H, et al. Degradation of SiC/SiC Composite due to Exposure at High Temperatures in Vacuum in Comparison with that in Air[J]. Composites Part A, 2004, 35(1): 33-40. [75] Shimoo T, Okamura K, Hayatsu T. Effect of Atmosphere on Pyrolysis of Nicalon[J]. Journal of Materials Science, 1996, 31(16): 4407-4413. [76] Chollon G, Pailler R, Naslain R, et al. Thermal Stability of a PCS-Derived SiC Fibre with a Low Oxygen Content (Hi-Nicalon)[J]. Journal of Materials Science, 1997, 32(2): 327-347. [77] Ochiai S, Kimura S, Tanaka H, et al. Residual Strength of PIP-Processed SiC/SiC Single-Tow Minicomposite Exposed at High Temperatures in Air as a Function of Exposure Temperature and Time[J]. Composites Part A, 2004, 35(1): 0-50. [78] Lu Zilong, Yue Jianling, Fu Zeyu, et al. Microstructure and Mechanical Performance of SiCf/BN/SiC Mini-Composites Oxidized at Elevated Temperature from Ambient Temperature to 1500℃ in Air[J]. Journal of the European Ceramic Society, 2020, 40(8): 2821-2827. [79] Huger M, Fargeot D, Gault C. Ultrasonic Characterization of Oxidation Mechanisms in Nicalon/C/SiC Composites[J]. Journal of the American Ceramic Society, 1994, 77(10): 2554-2560. [80] Frety N, Boussuge M. Relationship Between High-Temperature Development of Fibre-Matrix Interfaces and the Mechanical Behaviour of SiC-SiC Composites[J]. Composites Science and Technolog, 1990, 37(1-3): 177-189. [81] Frety N, Molins R, Boussuge M. Oxidizing Aging Effects on SiC-SiC Composites[J]. Journal of Materials Science, 1992, 27(18): 5084-5090. [82] Tortorelli P F, Riester L, Lowden R A, et al. Influence of Fiber Coatings on the Oxidation of Fiber-Reinforced SiC Composites[J]. Ceramic Engineering & Science Proceedings, 1993, 14(7): 358-366. [83] Ogbuji L U J T. A Pervasive Mode of Oxidative Degradation in a SiC‐SiC Composite[J]. Journal of the American Ceramic Society, 1998, 81(11): 2777-2784. [84] Zhu S, JianWu C, Mineo M, et al. Effect of Loading Rate and Temperature on Monotonic Tensile Behavior in an Enhanced SiC/SiC Composite[J]. Scripta Materialia, 2004, 50(3): 349-352. [85] Jones R H, Henager C H, Tortorelli P F. Elevated-Temperature Effects of Oxygen on SiC/SiC Composites[J]. Jom the Journal of the Minerals Metals & Materials Society, 1993, 45(12): 26-29. [86] Luo Z, Zhou X, Yu J. Mechanical Properties of SiC/SiC Composites by PIP Process with a New Precursor at Elevated Temperature[J]. Materials Science and Engineering A, 2014, 607: 155-161. [87] Davies I J, Ishikawa T, Suzuki N, et al. Tensile and In-Situ Fibre Properties of 3D SiC/SiC-Based Composite Tested at Elevated Temperature in Vacuum and Air with and without an Oxidation Protection System[M]. New York: John Wiley & Sons, Inc. 2008. [88] Morscher G N. Tensile Stress Rupture of SiCf/SiCm MiniComposites with Carbon and Boron Nitride Interphases at Elevated Temperatures in Air[J]. Journal of the American Ceramic Society, 1997, 80(8): 2029-2042. [89] Morscher G N, Hurst J, Brewer D. Intermediate-Temperature Stress Rupture of a Woven Hi-Nicalon, BN-Interphase, SiC-Matrix Composite in Air[J]. Journal of the American Ceramic Society, 2000, 83(6): 1441-1449. [90] Lin H T, Becher P F. Stress-Temperature-Lifetime Working Envelope of Nicalon Fiber-Reinforced SiC Matrix Composites in Air[J]. Composites Part A: Applied Science & Manufacturing, 1997, 28(11): 935-942. [91] Lara-Curzio E. Stress-Rupture of Nicalon/SiC Continuous Fiber Ceramic Composites in Air at 950°C[J]. Journal of the American Ceramic Society, 1997, 80(12): 3268-3272. [92] Lara-Curzio E, Ferber M K. Stress Rupture of Nicalon?/SiC CFCCs at Intermediate Temperatures[J]. Journal of Materials Science Letters, 1997, 16 (1): 23-26. [93] Lara-Curzio E, Tortorelli P F, More K L. Stress-Rupture of CFCCs at Intermediate Temperatures[J]. Ceramic Engineering and Science Proceedings, 1997, 18(4): 209-219. [94] Lara-Curzio E, Ferber M K, Tortorelli P F. Interface Oxidation and Stress-Rupture of Nicalon?/SiC CFCCs at Intermediate Temperatures[J]. Key Engineering Materials, 1997, 127: 1069-1082. [95] Darzens S, Chermant J L, Vicens J, et al. Understanding of the Creep Behavior of SiCf-SiC Composites[J]. Scripta Materialia, 2002, 47(7): 433-439. [96] Luan X, Cheng L, Xu Y, et al. Stressed Oxidation Behaviors of SiC Matrix Composites in Combustion Environments[J]. Materials Letters, 2007, 61(19-20): 4114-4116. [97] Eckel A J, Cawley J D, Parthasarathy T A. Oxidation Kinetics of a Continuous Carbon Phase in a Nonreactive Matrix[J]. Journal of the American Ceramic Society, 1995, 78(4): 972-980. [98] Mart??nez-Fernández J, Morscher G N. Room and Elevated Temperature Tensile Properties of Single Tow Hi-Nicalon, Carbon Interphase, CVI SiC Matrix Minicomposites[J]. Journal of the European Ceramic Society, 2000, 20(14-15): 2627-2636. [99] Morscher G N, Cawley J D. Intermediate Temperature Strength Degradationin SiC/SiC Composites[J]. Journal of the European Ceramic Society, 2002, 22(14-15): 2777-2787. [100] Ruggles-Wrenn M B, Christensen D T, Chamberlain A L, et al. Effect of Frequency and Environment on Fatigue Behavior of a CVI SiC/SiC Ceramic Matrix Composite at 1200℃[J]. Composites Science and Technology, 2011, 71(2): 190-196. [101] Ruggles-Wrenn M B, Jones T P. Tension-Compression Fatigue of a SiC/SiC Ceramic Matrix Composite at Elevated Temperature[J]. Journal of Engineering for Gas Turbines & Power, 2012, 134(9): 467-473. [102] Ruggles-Wrenn M B, Delapasse J, Chamberlain A L, et al. Fatigue Behavior of a Hi-Nicalon?/SiC-B4C Composite at 1200℃ in Air and in Steam[J]. Materials Science & Engineering A, 2012, 534(1): 119-128. [103] Ruggles-Wrenn M B, Kurtz G. Notch Sensitivity of Fatigue Behavior of a Hi-Nicalon?/SiC-B4C Composite at 1200℃ in Air and in Steam[J]. Applied Composite Materials, 2013, 20(5): 891-905. [104] Ted T K, Shankar M, Larry P Z, et al. Simultaneous Fatigue and Combustion Exposure of a SiC/SiC Ceramic Matrix Composite[J]. Journal of Composite Materials, 2010, 44(25): 2991-3016. [105] Pasquier S, Lamon J, Naslain R. Tensile Static Fatigue of 2D SiC/SiC Composites with Multilayered (PyC-SiC)n Interphases at High Temperatures in Oxidizing Atmosphere[J]. Composites Part A, 1998, 29(9-10): 1157-1164. [106] Ikarashi Y, Ogasawara T, Aoki T. Effects of Cyclic Tensile Loading on the Rupture Behavior of Orthogonal 3-D Woven SiC Fiber/SiC Matrix Composites at Elevated Temperatures in Air[J]. Journal of the European Ceramic Society, 2019, 39(4): 806-812. [107] Wu Shou-jun, Cheng Lai-fei, Zhang Jun, et al. Tension-Tension Fatigue Damage Characteristics of a 3D SiC/SiC Composite in H2O-O2-Ar Environment at 1300℃[J]. Materials Science & Engineering A, 2006, 435-436: 412-417. [108] Zhang J, Luan X, Cheng L, et al. Damage Evolution in 3D SiCf/SiC Composites in Fatigue-Oxidation Environment[J]. Acta Materiae Compositae Sinica, 2009, 26(5): 120-126. [109] Luo Z, Cao H, Hu R, et al. Tension-Tension Fatigue Behavior of a PIP SiC/SiC Composite at Elevated Temperature in Air[J]. Ceramics International, 2016, 42(2): 3250-3260. [110] Lara-Curzio E. Analysis of Oxidation-Assisted Stress-Rupture of Continuous Fiber-Reinforced Ceramic Matrix Composites at Intermediate Temperatures[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(4): 549-554. [111] Casas L, Martínez-Esnaola J M. Modelling the Effect of Oxidation on the Creep Behaviour of Fibre-Reinforced Ceramic Matrix Composites[J]. Acta Materialia, 2003, 51(13): 3745-3757. [112] Pailler F, Lamon J. Micromechanics Based Model of Fatigue/Oxidation for Ceramic Matrix Composites[J]. Composites Science & Technology, 2005, 65(3-4): 369-374. [113] Sullivan R M. Time-Dependent Stress Rupture Strength of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures[J]. Journal of the European Ceramic Society, 2016, 36(8): 1885-1892. [114] Curtin W A. Ultimate Strengths of Fibre-Reinforced Ceramics and Metals[J]. Composites, 1992, 24(2): 98-102. [115] Yu G, Gao X, Chen Y, et al. Failure Modeling of SiC/SiC Mini-Composites in Air Oxidizing Environments[J]. Applied Composite Materials, 2018, 25(6): 1441-1454. [116] Curtin W A, Ahn B K, Takeda N. Modeling Brittle and Tough Stress-Strain Behavior in Unidirectional Ceramic Matrix Composites[J]. Acta Materialia, 1998, 46(10): 3409-3420. [117] 宋迎东, 高希光, 孙志刚. 航空发动机陶瓷基复合材料疲劳迟滞机理与模型研究进展[J]. 南京航空航天大学学报, 2019, (4): 417-426. [118] Gao X, Fang G, Song Y. Hysteresis Loop Model of Unidirectional Carbon Fiber-Reinforced Ceramic Matrix Composites under an Arbitrary Cyclic Load[J]. Composites Part B: Engineering, 2014, 56: 92-99. [119] 方光武, 高希光, 宋迎东. 单向纤维增强陶瓷基复合材料界面滑移规律[J]. 复合材料学报, 2013, 30(4): 101-107. [120] Fang G, Gao X, Zhang S, et al. A Residual Strength Model for the Fatigue Strengthening Behavior of 2D Needled CMCs[J]. International Journal of Fatigue, 2015, 80: 298-305. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部