推进技术 ›› 2020, Vol. 41 ›› Issue (9): 2099-2119.DOI: 10.13675/j.cnki.tjjs.200320
陈伟1,刘璐璐1,宣海军2,罗刚1,赵振华1,韩佳奇1,周标1
出版日期:
2020-09-15
发布日期:
2020-09-15
作者简介:
李 迪,硕士,高级工程师,研究领域为航空发动机结构强度设计和试验。E-mail:lidi831616@163.com
基金资助:
Online:
2020-09-15
Published:
2020-09-15
摘要: 航空发动机在服役期间可能遭受鸟撞、叶片丢失等突加高能载荷的作用,造成发动机整机/部件动力学特性恶化和关键构件的损伤,危及发动机的结构安全性。本文从突加高能载荷复现方法与传递规律、突加高能载荷作用下转子/整机结构响应研究、突加高能载荷作用下关键构件损伤机理三个方面综述了现有研究工作,并针对近年来发展的抗突加高能载荷的安全性设计方法进行了探讨,最后分析了突加高能载荷问题的科学本质及发展趋势,为突加高能载荷作用下航空发动机安全性设计提供了重要参考。
陈伟,刘璐璐,宣海军,罗刚,赵振华,韩佳奇,周标. 突加高能载荷作用下航空发动机结构动态响应及安全性综述[J]. 推进技术, 2020, 41(9): 2099-2119.
CHEN Wei1, LIU Lu-lu1, XUAN Hai-jun2, LUO Gang1, ZHAO Zhen-hua1, HAN Jia-qi1, ZHOU Biao1. Review on Dynamic Response and Safety of Engine Structure under Sudden High Energy Load[J]. Journal of Propulsion Technology, 2020, 41(9): 2099-2119.
[1] Wilbeck J S, Barber J P. Bird Impact Loading[J]. The Shock and Vibration Bulletin, 1978, 48(2): 115-122. [2] Barber John P, Taylor Henry R, Wilbeck James S. Bird Impact Forces and Pressures on Rigid and Compliant Targets[J]. Bird Strikes, 1978, 46(1): 135-142. [3] Lavoie M A, Gakwaya A, Ensan M N, et al. Validation of Available Approaches for Numerical Bird Strike Modeling Tools[J]. International Review of Mechanical Engineering, 2007, 1(4): 225-231. [4] Lavoie M A, Gakwaya A, Ensan M N, et al. Bird’s Substitute Tests Results and Evaluation of Available Numerical Methods[J]. International Journal of Impact Engineering, 2009, 36(10-11): 1276-1287. [5] Boehman L T, Challita A. A Model for Prediction Bird and Ice Impact Loads on Structures[R]. AFWALTR-82-2046, AD A119408, 1982: 15-23. [6] Robert S B. Structural Element and Real Blade Impact Testing-Volume I[R]. AFWALTR-82-2121, ADA127744, 1983: 1469-1486. [7] 罗 刚, 赵振华, 沈 峘, 等. 一种阀膜组合型自动注气空气炮设计与验证[J]. 航空发动机, [8] 彭迎风, 辛 勇. 冲击式滑阀开炮机构的研究和设计[J]. 机械制造, 2006, 44(4): 26-28. [9] 冯振飞, 苏铁熊, 范小龙. 某可调节式液压缓冲器的优化仿真与分析[J]. 机械设计与制造工程, 2020, 49(3): 10-14. [10] Meguid F E. Analysis of Geometry Effects of an Artificial Bird Striking An Aeroengine Fan Blade[J]. International Journal of Impact Engineering, 2008, 35(4): 487-498. [11] Ritt S A, Johnson A, Voggenreiter H. Improvement of Substitute Bird for Impact Testing[C]. Seville: 2nd Aerospace Structural Impact Dynamics International Conference, 2015. [12] Frederik A, Geert L. Characterization of Real and Substitute Birds Through Experimental and Numerical Analysis of Momentum Average Impact Force and Residual Energy in Bird[J]. International Journal of Impact Engineering, 2017, 99(4): 1-13. [13] Seidt J D, Periira J M, Hammer J T, et al. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube[R]. NASA/TM-2012-217661. [14] 尹 晶, 范尔宁. 鸟撞击载荷的冲量与时间因素的确定[J]. 南京航空航天大学学报, 1994, 26(1): 68-74. [15] 陈 伟, 漆文凯, 高德平. 载荷与响应耦合下叶片鸟撞击响应分析[J]. 航空动力学报, 1998, 13(1): 94-96, 112-113. [16] 陈 伟, 宋迎东, 尹 晶, 等. 离心载荷作用下平板叶片鸟撞击响应计算[J]. 航空动力学报, 1997, 12(2): 11-13. [17] Ramachandra. Evaluation of Transient Engine-Bearing-loads Due to Bridstrikes[M]. India: Gas Turbine Research Establishment Ministry of Defence, 1996. [18] 罗 刚. 大涵道比涡扇发动机吸鸟结构安全性分析与评估方法[D]. 南京: 南京航空航天大学, 2018. [19] 唐家茂, 宣海军, 彭 煜, 等. 单级轴流压气机叶片预置裂纹法包容性试验研究[J]. 燃气涡轮试验与研究, 2018, 31(1): 18-23. [20] 何 庆. 航空发动机机匣包容性机理及数值仿真方法研究[D]. 杭州: 浙江大学, 2012. [21] He Z, Xuan H, Bai C. A Blade Release Method for FBO Test[J]. Experimental Techniques, 2018, 42(3): 311-318. [22] 吕登洲. 航空发动机包容试验中风扇叶片爆破飞脱技术研究[D]. 杭州: 浙江大学, 2017. [23] 张国静. 航空发动机风扇叶片爆破飞脱技术研究[D]. 杭州: 浙江大学, 2017. [24] 郭明明, 吕登洲, 洪伟荣, 等. 航空发动机机匣包容试验叶片飞脱方法[J]. 航空发动机, 2016, 42(2): 73-76. [25] Shmotin Y, Gabov D, Ryabov A, et al. Numerical Analysis of Aircraft Engine Fan Blade-Out[R]. AIAA 2006-4620. [26] Dzenan H. Mechanical Loads on a Turbofan Engine Structue at Blade-Off[D]. Lu1ea: Lulea University of Technology, 2009. [27] 刘璐璐, 赵振华, 陈 伟, 等. 叶片丢失后发动机整机响应模拟试验与仿真[J]. 航空动力学报, 2018, 33(2): 290-298. [28] 吴建林. 航空发动机叶片丢失激励下整机响应分析[D]. 南京: 南京航空航天大学, 2016. [29] O'Toole B, Karpanan K, Feghhi M. Experimental and Finite Element Analysis of Preloaded Bolted Joints under Impact Loading[C]. Rhode Island: AIAA/ASME/ASCE/AHS/ASC Structures, [30] Klok A V. Mechanical Behaviour of Bolted Joints under Impact Rates of Loading[D]. Michigan State: Michigan State University, 2012. [31] 严 波, 王海坤, 何 斌. 典型接合面冲击动态响应[J]. 噪声与振动控制, 2012, 32(6): 58-61. [32] 马艳红, 梁智超, 王桂华, 等, 航空发动机叶片丢失问题研究综述[J]. 航空动力学报, 2016, 31(3): 513-526. [33] Dzenan H. Mechanical Loads on a Turbofan Engine Structure at Blade-Off[D]. Lu1ea: Lu1ea University of Technology, 2009. [34] Sun G Y, Palazzolo A, Provenza A, et al. Long Duration Simulations Including Thermal Growths for Dual-Rotor Gas Turbine Engine[J]. Journal of Sound and Vibration, 2008, 316(1): 147-163. [35] Dr J J, Prof H U. Stability Analysis of Full Annular Rub in Rotor-tologtator Systems[J]. Proceedings of Applied Mechanics and Mathematics, 2003, 2(1): 88-89. [36] Jiang J, Ulbrich H. Stability Analysis of Sliding Whirl in a Nonlinear Jeffcott Rotor with Cross-Coupling Stiffness Coefficients[J]. Nonlinear Dynamics, 2001, 24(3): 269-283. [37] Groll G V, Ewins D J. The Harmonic Balance Method With Arc-length Continuation in Rotor-Stator Contact Problems[J]. Journal of Sound and Vibration, 2001, 241(2): 223-233. [38] Shang Z Y, Jiang J, Hong L. The Influence of the Cross-Coupling Effects on the Dynamics of Rotor/Stator Rubbing[C]. Chendu: ICDVC, [39] Peletan L, Sébastien Baguet, Torkhani M, et al. Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics[J]. Nonlinear Dynamics, 2014, 78(4): 2501-2515. [40] Sinha S K. Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event with Contact-Impact Rub Loads[J]. Journal of Sound and Vibration, 2013. 332(9): 2253-2283. [41] Wilkes J C, Childs D W, Dyck B J, et al. The Numerical and Experimental Characteristics of Multimode Dry-Friction Whip and Whirl[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(5): 502-503. [42] Nitschke S, Wollmann T, Ebert C, et al. An Advanced Experimental Method and Test Rig Concept for Investigating the Dynamic Blade-Tip/Casing Interactions under Engine-Like Mechanical Conditions[J]. Wear, 2019, 422-423: 161-166. [43] 洪 杰, 栗天壤, 王永锋, 等. 叶片丢失激励下航空发动机柔性转子系统的动力学响应[J]. 航空动力学报, 2018, 33(2): 257-264. [44] 洪 杰, 陈 成, 王永锋, 等. 突加不平衡激励下高速柔性转子系统振动特性试验[J]. 航空动力学报, 2018, 33(1): 15-23. [45] Yu P, Zhang D Y, Ma Y H, et al. Dynamic Modeling and Vibration Characteristics Analysis of the Aero-Engine Dual-Rotor System with Fan Blade Out[J]. Mechanical Systems and Signal Processing, 2018, 106: 158-175. [46] 魏 静, 白培鑫, 杨攀武, 等. 叶片丢失对齿轮涡扇发动机风扇轴振动影响的研究[J]. 振动工程学报, 2018, 31(2): 226-237. [47] 刘 阳, 李 诚, 李富才, 等. 航空发动机叶片脱落的非线性瞬态动力学研究[J]. 机械工程学报, 2017, 55(13): 23-37. [48] 罗 灵. FBO激励下转子-支承系统瞬态动力学响应特性研究[D]. 杭州: 浙江大学, 2017. [49] 叶 冬. 高速柔性转子突加大不平衡响应研究[D]. 杭州: 浙江大学, 2014. [50] 郑兆昌, 谭明一. 非线性系统动态响应的数值计算方法[J]. 应用数学和力学, 1985, 6 (1): 93-101. [51] 李其汉, 赵福安, 张世平. 带弹性阻尼支承的转子系统丢失叶片瞬态响应试验研究[J]. 航空动力学报, 1992, 7(2): 103-107. [52] 任兴民, 顾家柳, 戈立春. 转子-机匣系统的瞬态动力响应计算[J]. 西北工业大学学报, 1996, 14(2): 234-238. [53] 王宗勇, 龚 斌, 闻邦椿. 质量及激励幅值突变转子系统动力学研究[J]. 振动与冲击, 2008, 27(8): 48-51. [54] 王宗勇, 龚 斌, 闻邦椿. 质量及激励幅值突变转子系统动力学研究[J]. 振动与冲击, 2008, 27(8): 48-51 [55] 祝长生. 带辅助轴承的主动电磁轴承-柔性转子系统的突加不平衡响应[J]. 振动与冲击, 2010, 29(S): 25-27. [56] 陈 果. 双转子航空发动机整机振动建模与分析[J]. 振动工程学报, 2011, 24(6): 619-632. [57] 李 涛, 任兴民, 岳 聪, 等. 单盘转子突加不平衡瞬态响应特征研究[J]. 机械科学与技术, 2012, 31(6): 924-927. [58] 晏砺堂, 张世平, 李其汉. 高效多孔环挤压油膜阻尼器的减振特性研究[J]. 航空动力学报, 1993, 8(3): 225-233. [59] 夏 南, 孟 光, 冯心海. 油膜惯性力对双盘转子-SFD系统突加不平衡和加速响应特性的影响[J]. 航空动力学报, 2000, 15(1): 71-74. [60] 夏冶宝, 任兴民, 秦卫阳, 等. 浮环挤压油膜阻尼器对模拟低压转子突加不平衡响应影响分析[J]. 航空动力学报, 2015, 30 (11): 2771-2778. [61] 周海仑, 罗贵火, 冯国全, 等. 含浮环式挤压油膜阻尼器的转子系统响应分析[J]. 航空动力学报, 2001, 16(3): 644-650. [62] 周海仑, 罗贵火, 艾延廷, 等. 含浮环式挤压油膜阻尼器转子系统的突加不平衡响应分析[J]. 航空动力学报, 2014, 29(3): 578-584. [63] 许 斌, 徐尉南, 张 文. 单盘转子的同步全周碰摩及其稳定性分析[J]. 复旦学报(自然科学版), 2006, 5(2): 148-154. [64] 张华彪, 陈予恕. 非线性转子系统突加不平衡的碰摩响应[C]. 西安: 第九届全国动力学与控制学术会议会议手册, 2015. [65] 陈 果. 航空发动机整机振动耦合动力学模型及其验证[J]. 航空动力学报, 2012, 27(8): 1887-1894. [66] 陈 果. 含复杂滚动轴承建模的航空发动机整机振动耦合动力学模型[J]. 航空动力学报, 2017, 32(9): 2193-2204. [67] 赵 斌, 陈 果, 冯国全. 航空发动机整机振动半实物建模方法研究[J]. 推进技术, 2016, 37(2): 346-353. [68] 赵 斌. 航空发动机整机振动半实物仿真模型研究[D]. 南京: 南京航空航天大学, 2015. [69] 张大义, 刘烨辉, 洪 杰, 等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术, 2015, 36(5): 768-773. [70] 陈 萌, 马艳红, 刘书国, 等. 航空发动机整机有限元模型转子动力学分析[J]. 北京航空航天大学学报, 2007, 33(9): 1013-1016. [71] 王海涛. 某型航空发动机整机振动特性分析[D]. 南京: 南京航空航天大学, 2010. [72] Liebich R, Kalinowski P, Bargen O V. A Full Size Rotor Dynamic Test Rig for Whole Engine Mechanics of Aero Engines[C]. London: Institution of Mechanical Engineers-10th International Conference on Vibrations in Rotating Machinery, 2012. [73] Cosme N, Chevrolet D, Bonini J, et al. Prediction of Engine Loads and Damages Due to Fan Blade off Event[C]. Denver: Structural Dynamics, and [74] Husband J B. Developing an Efficient FEM Structural Simulation of a Fan Blade off Test in a Turbofan Jet Engine[D]. Saskatoon: University of Saskatoon, 2007. [75] Sinha S K, Dorbala S. Dynamic Loads in the Fan Containment Structure of a Turbofan Engine[J]. Journal of Aerospace Engineering, 2009, 22(3): 260-269. [76] Rajeev Venkatachalapathy, Davila G P, Prakash J. Catalytic Decomposition of Hydrogen Peroxide in Alkaline Solutions[J]. Electrochemistry Communications, 1999, 1(12): 614-617. [77] Sengoz K, Kan S, Eskandarian A. Development of a Generic Gas Turbine Engine Fan Blade-Out Full-Fan Rig Model[R]. DOT/FAA/TC-14/43, 2015. [78] Heidari M, Carlson D L, Sinha S, et al. An Efficient Multi-Disciplinary Simulation of Engine Fan-Blade Out Event Using MD Nastran[C]. Schaumburg: AlAA/ASME/ ASCE/AHS/ASC Structures, [79] Czeslaw W. Fan Blade Optimization under Medium Bird Strike Load[C]. Huntington: Product Development Conference, 2004. [80] 洪 杰, 许美玲, 马艳红. 风扇叶片丢失激励下转子-支承系统结构安全性设计策略[J]. 航空动力学报, 2016, 31(11): 2723-2730. [81] 吴建林. 航空发动机叶片丢失激励整机响应分析方法研究[D]. 南京: 南京航空航天大学, 2016. [82] 刘璐璐, 赵振华, 陈 伟, 等. 叶片丢失后发动机整机响应模拟试验与仿真[J]. 航空动力学报, 2018, 33(2): 290-298. [83] [84] Horsley J. The 'Rolls-Royce' Way of Validating Fan Integrity[C]. California: Joint Propulsion Conference and Exhibit, 2013. [85] 黄志勇, 陈 伟, 赵海欧, 等. 评定叶片鸟撞击损伤的参数与方法[J]. 航空发动机, 2005, 31(1): 28-30. [86] 罗 刚, 陈 伟, 赵振华, 等. 航空发动机吸鸟适航验证关键参数分析方法[J]. 机械科学与技术, 2016, 35(11): 1774-1779. [87] Bertke S R. Structural Element and Real Blade Impact Testing[J]. International Journal of Mechanics and Materials in Design, 1983, 2: 1-86. [88] 关玉璞, 张在坤, 赵振华, 等. 粒子分离器涡流叶片鸟撞击损伤试验[J]. 航空动力学报, 2007, 22(12), 2094-2100. [89] Guan Y P, Zhao Z H, Chen W, et al. Foreign Object Damage to Fan Rotor Blades of Aeroengine, Part I: Experimental Study of Bird Impact[J]. Chinese Journal of Aeronautics, 2007, 20(5): 408-414. [90] Chen W, Luo G, Zhang S. Development Strategy of Engine Bird Ingestion Certification Technology[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(5): 485-494. [91] 柴象海, 侯 亮, 王志强, 等. 航空发动机宽弦风扇叶片鸟撞损伤模型标定[J]. 航空动力学报, 2016, 31(5): 1032-1038. [92] Kim M, Vahdati M, Imregun M. Aeroelastic Stability Analysis of a Bird-Damaged Aeroengine Fan Assembly[J]. Aerospace Ence and Technology, 2001, 5(7): 469-482. [93] Guida M. Study, Design and Testing of Structural Configurations for the Bird-Strike Compliance of Aeronautical Components[M]. Naples: Aerospace Engineering University of Naples, 2008. [94] Prakash R, Channegowda H. A Study on Bird Impact Damages on Shrouded Fan Blades of an Aero-Engine[C]. Bangalore: ASME 2013 Gas Turbine India Conference, 2013. [95] Naik Rajiv, Logan Charles. Damage Resistant Materials for Aero-Engine Applications[R]. AIAA 99-1370. [96] Zeng C, Jiang Xiang-hua, Chai Xiang-hai, et al. TC4 Hollow Fan Blade Structural Optimization Based on Bird-Strike Analysis[J]. Procedia Engineering, 2015, 99: 1385-1394. [97] 马 力, 姜甲玉, 薛庆增. 航空发动机第1级风扇叶片鸟撞研究[J]. 航空发动机, 2014, 40(2): 65-69. [98] 刘建明, 蒋向华, 王 东, 等. 实体元空心叶片鸟撞流固耦合研究及数值模拟[J]. 航空发动机, 2013, 39(2): 70-74. [99] Meguid SA, Mao RH, Ng TY. FE Analysis of Geometry Effects of an Artificial Bird Striking an Aeroengine Fan Blade[J]. International Journal of Impact Engineering, 2008, 35(6): 487-498. [100] Guan Y P, Zhao Z H, Chen We, et al. Foreign Object Damage to Fan Rotor Blades of Aeroengine Part II: Numerical Simulation of Bird Impact[J]. Chinese Journal of Aeronautics, 2008, 21(4): 328-334. [101] Siemann M H, Ritt S A. Novel Particle Distributions for SPH Bird-Strike Simulations[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 343(1): 746-766. [102] Zhang Z, Li L, Zhang D. Effect of Arbitrary Yaw/Pitch Angle in Bird Strike Numerical Simulation Using SPH Method[J]. Aerospace Science and Technology, 2018, 81: 284-293. [103] Zhang, D, Fei Q. Effect of Bird Geometry and Impact Orientation in Bird Striking on a Rotary Jet-Engine Fan Analysis Using SPH Method[J]. Aerospace Science and Technology, 2016, 54: 320-329. [104] Vignjevic R, Orlowski M, De Vuyst T, et al. A Parametric Study of Bird Strike on Engine Blades[J]. International Journal of Impact Engineering, 2013, 60: 44-57. [105] Liu J, Li Y. Numerical Simulation of a Rotary Engine Primary Compressor Impacted by Bird[J]. Chinese Journal of Aeronautics, 2013, 26(4): 926-934. [106] Jain R, Ramachandra K. Bird Impact Analysis of Pre-stressed Fan Blades Using Explicit Finite Element Code[C]. Tokyo: Proceedings of the International Gas Turbine Congress, 2003. [107] Siddens A J, Bayandor J. Detailed Post-Soft Impact Progressive Damage Analysis for a Hybrid Structure Jet Engine[C]. Brisbane: 28th International Congress of the Aeronautical Sciences, 2012. [108] Mao R H, Meguid S A, Ng T Y. Transient Three Dimensional Finite Element Analysis of a Bird Striking a Fan Blade[J]. International Journal of Mechanics and Materials in Design, 2008, 4(1): 79-96. [109] Jain R, Ramachandra K. Bird Impact Analysis of Pre-Stressed Fan Blades Using Explicit Finite Element Code[C]. Tokyo: Proceedings of the International Gas Turbine Congress, 2003. [110] Siddens A J, Bayandor J. Detailed Post-Soft Impact Progressive Damage Analysis for a Hybrid Structure Jet Engine[R]. NASA/TM-2014-218397. [111] 宣海军, 陆 晓, 洪伟荣. 航空发动机机匣包容性研究综述[J]. 航空动力学报, 2010, 25(8): 1860-1870. [112] 龚梦贤, 王旅生, 曹凤兰. 叶片包容性试验研究[J]. 航空动力学报, 1992, 7(2): 144-146. [113] 吴旭明, 宁宣熙. 机匣包容性的贝叶斯评价方法[J]. 航空学报, 1998, 19(2): 200-204. [114] 宣海军, 洪伟荣, 吴荣仁. 航空发动机涡轮叶片包容试验及数值模拟[J]. 航空动力学报, 2005, 20(5): 762-767. [115] 张晓峰, 宣海军, 吴荣仁. 航空发动机叶片包容模拟试验与数值仿真研究[J]. 航空发动机, 2005, 31(4): 39-42. [116] Xuan H J, Wu R R. Aeroengine Turbine Blade Containment Tests Using High-Speed Rotor Spin Testing Facility[J]. Aerospace Science & Technology, 2006, 10(6): 501-508. [117] 范志强, 高德平, 姜 涛, 等. 模型机匣的包容性试验和数值模拟[J]. 南京航空航天大学学报, 2006, 38(5): 551-556. [118] 范志强, 高德平, 覃志贤, 等. 航空发动机真实机匣的包容性试验[J]. 航空动力学报, 2007, 22(1): 24-28. [119] Eryilmaz I, Guenchi B, Pachidis V. Multi-Blade Shedding in Turbines with Different Casing and Blade Tip Architectures[J]. Aerospace Science and Technology, 2019, 87: 300-310. [120] Sarkar S, Atluri S N. Effects of Multiple Blade Interaction on the Containment of Blade Fragments During a Rotor Failure[J]. Finite Elements in Analysis and Design, 1996, 23(2-4): 211-223. [121] Kraus A, Frischbier J. Containment and Penetration Simulation in Case of Blade Loss in a Low Pressure Turbine[C]. Bad Mergentheim: Proceedings of the DYNAmore LS-DYNA Foru, 2002. [122] Hermosilla U J, Alcaraz L, Aja A M. Blade Impact Simulation Against Turbine Casings[C]. Boston: ABAQUS Users’ Conference, 2004. [123] Shmotin Y N, Gabov D V, Numerical Analysis of Aircraft Engine Fan Blade-Out[C]. Sacramento: 42nd AIAA/ ASME/SAE/ASEE Joint Propulsion Conference, [124] He Q, Xuan H J, Liu L L, et al. Perforation of Aero-Engine Fan Casing by a Single Rotating Blade[J]. Aerospace Science and Technology, 2013, 25(1): 234-241. [125] He Q, Xie Z, Xuan H J, et al. Multi-Blade Effects on Aero-Engine Blade Containment[J]. Aerospace Science and Technology, 2016, 49(2): 101-111. [126] 何 庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012, 27(2): 295-299. [127] 刘璐璐, 罗 刚, 陈 伟, 等. 基于打靶试验的风扇机匣包容能力评估方法[J]. 航空发动机, 2019, 45(1): 76-82. [128] 柴象海, 张晓云, 侯 亮, 等. 航空发动机风扇机匣包容性等效试验与分析方法[J]. 振动与冲击, 2016, 35(2): 162-167. [129] [130] [131] [132] [133] [134] Prakash R, Channegowda H, Kaliyaperumal A. A Study on Bird Impact Damages on Shrouded Fan Blades of an Aero-Engine[C]. Bangalore: International Congress of the Aeronautical Sciences, 2014. [135] Liu L L, Luo G, Chen W, et al. Dynamic Behavior and Damage Mechanism of 3D Braided Composite Fan Blade under Bird Impact[J]. International Journal of Aerospace Engineering, 2018, (2): 1-16. [136] 刘 洋, 王 亮, 郭 军. 铝包边对复合材料风扇叶片抗鸟撞能力的影响[J]. 兵工学报, 2018, 39(S1): 114-120. [137] Stotler C L, Coppa A P. Containment of Composite Fan Blades-Final Report[R]. NASA-CR-159544 (R79AEG197), 1979. [138] Stotler C L. Development of Advanced Lightweight System Containment-Final report[R]. NASA-CR-165212(R81AEG208), 1981. [139] Xuan H, Hu Y Q, Wu Y N, et al. Containment Ability of Kevlar 49 Composite Case under Spinning Impact[J]. Journal of Aerospace Engineeing, 2018, 31(2). [140] He Z K, Xuan H J, Bai C, et al. Containment of Soft Wall Casing Wrapped with Kevlar fabric[J]. Chinese Journal of Aeronautics, 2019, 32(4): 954-966. [141] 何泽侃. 芳纶纤维布缠绕增强软壁机匣包容性研究[D]. 杭州: 浙江大学, 2018. [142] He Z K, Xuan H J, Bai C, et al. Containment Tests and Analysis of Soft Wall Casing Fabricated by Wrapping Kevlar Fabric Around Thin Metal Ring[J]. Aerospace Science and Technology, 2017, 61: 35-44. [143] 牛丹丹. Kevlar织物缠绕增强机匣包容性研究[D]. 杭州: 浙江大学, 2015. [144] 张 涛. 航空发动机风扇机匣包容数值模拟技术与试验验证[D]. 南京: 南京航空航天大学, 2012. [145] Liu L L, Zhao Zhenhua, Chen Wei, et al. Influence of Pre-Tension on Ballistic Impact Performance of Multi-Layer Kevlar 49 Woven Fabrics for Gas Turbine Engine Containment Systems[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1273-1286. [146] Zhao Z H, Liu L L, Chen W, et al. Numerical Simulation Methodology of Multi-Layer Kevlar 49 Woven Fabrics in Aircraft Engine Containment Application[J]. International Journal of Crashworthiness, 2019, 24(1): 86-99. [147] Liu L L, Yang Z Z, Zhao Z H, et al. The Influences of Rheological Property on the Impact Performance of Kevlar Fabrics Impregnated with SiO2/PEG Shear Thickening Fluid[J]. Thin-Walled Structures, 2020, 151. [148] 刘 晓. STF-Kevlar织物动态力学行为与数值仿真方法研究[D]. 南京: 南京航空航天大学, 2018. [149] Griffiths B. Composite Fan Blade Containment Case[J]. High-Performance Composites, 2005, 13(3): 76-78. [150] Xuan H J, Liu L L, Chen G T, et al. Impact Response and Damage Evolution of Triaxial Braided Carbon/Epoxy Composites[J]. Textile Research Journal, 2013, 83(16): 1703-1716. [151] Liu L L, Xuan H J, Zhang N, et al. Impact Response and Damage Evolution of Triaxial Braided Carbon/Epoxy Composites[J]. Textile Research Journal, 2013, 83(17): 1821-1835. [152] Liu L L, Xuan H J, He Z K, et al. Containment Capability of 2D Triaxial Braided Tape Wound Composite Casing for Aero-Engine[J]. Polymer Composites, 2016, 37(7): 2227-2242. [153] Liu L L, Xuan H J, Chen W, et al. Modified Subcell Model Using Solid Elements for Triaxial Braided Composite under Ballistic Impact[J]. Journal of Aerospace Engineering, 2016, 29(5). [154] 刘璐璐. 二维三轴编织带缠绕碳纤维复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2014. [155] Boratgis E. Turbine Engine Bearing Support[P]. US: [156] John A K, Randy M V, Christopher G C. Fan Decoupling Fuse[P]. US: [157] 洪 杰, 许美玲, 马艳红, 等. 风扇叶片丢失激励下转子-支承系统结构安全性设计策略[J]. 航空动力学报, 2016, 31(11): 2723-2730. [158] 彭 刚, 李 超, 曹 冲, 等. 冲击激励转子系统动力学响应及安全性设计[J]. 推进技术, 2018, 39(5): 1111-1121. [159] Wang C, Zhang D, Ma Y H, et al. Dynamic Behavior of Aero-Engine Rotor with Fusing Design Suffering Blade off[J]. Chinese Journal of Aeronautics, 2017, 30(3): 68-81. [160] Ma C, Chen W, Liu L, et al. Response of Aeroengine with Fusing Design Suffering FBO[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-19. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部