[1] Bartolotta P A, McNelis N B, Shafer D G. High Speed Turbines: Development of a Turbine Accelerator (RTA) for Space Access[R]. AIAA 2003-6943.
[2] Dusa D J. High Mach Propulsion System Installation and Exhaust System Design Considerations[R]. AIAA 87-2941.
[3] McNelis N, Bartolotta P. Revolutionary Turbine Accelerator (RTA) Demonstrator[R]. AIAA 2005-3250.
[4] Miyagi H, Kimura H, Kishi K, et al. Combined Cycle Engine Research in Japanese HYPR Program[R]. AIAA 98-3278.
[5] Sosounov V A, Tskhovrebov M M, Solonin V I, et al. The Study of Experimental Turboramjets[R]. AIAA 92-3720.
[6] Sippel M. Research on TBCC Propulsion for a Mach 4.5 Supersonic Cruise Airliner[R]. AIAA 2006-7976.
[7] Johnson J E, Sprunger E V, Simmons J R. Variable Cycle Turbofan-Ramjet Engine[P]. USA: 5694768, 1997-12-09.
[8] Ito M. International Collaboration in Super/Hypersonic Propulsion System Research Project[J]. The Aeronautical Journal, 2000, 104: 445-451.
[9] Kuo S C, Doernbach J D, Champagne G, et al. A Scoping Study for Hypersonic Transport Propulsion Systems[R]. ASME 92-GT-409.
[10] Ichimaru O, Ishizuka M, Murashima K. Overview of the Japanese National Project for Super/Hyper-Sonic Transport Propulsion System[R]. ASME 92-GT-252.
[11] Yanagi R, Morita M, Watanabe Y, et al. Conceptual Design of Turbo-Accelerator for HST Combined Cycle Engine[R]. ASME 92-GT-253.
[12] Itahara H, Kohara S, Takagi S, et al. Turbo Engine Research in Japanese HYPR Project for HST Combined Cycle Engine[R]. AIAA 94-3358.
[13] Fujimura T, Ishii K, Takagi S, et al. HYPR90-T Turbo Engine Research for HST Combined Cycle Engine[R]. SAE-951991, 1995.
[14] Miyagi H, Miyagawa H, Monji T, et al. Combined Cycle Engine Research in Japanese HYPR Project[R]. AIAA 95-2751.
[15] Itahara H, Nakata Y, Kimura T, et al. Research and Development of HYPR90-T Variable Cycle Turbo Engine for HST[R]. ISABE 97-7013.
[16] Fujimura T, Tsugumi S, Kimura H, et al. Research and Development of High Temperature Core Engine for HST[R]. AIAA 98-3279.
[17] Okazaki M, Miyazawa K, Ishizawa K. Engineering Research for Super/Hypersonic Transport Propulsion System (HYPR)[R]. ISABE 99-7004.
[18] Ohshima T, Kanbe K, Kimura H, et al. Control of the Intake Shock-Position in the Test Rig for Ramjet Engine[R]. AIAA 97-2885.
[19] Suzuki M, Kuno N, Tobita A, et al. Current Status of Fan Component Research in HYPR Program[R]. AIAA 98-3280.
[20] Kawano M, Kuyama T, Kobayashi M, et al. Development of a High Temperature Combustor for HYPR Mach 3 Turbojet Engines[R]. AIAA 98-3281.
[21] Shimizu K, Nogami R. Current Status of Low Pressure Turbine Component Research in HYPR Program[R]. AIAA 98-3282.
[22] Hirai K, Kodama H, Miyagi H, et al. Analysis of Flow in the Front-Mixing Region of Hypersonic Combined-Cycle Engine[R]. AIAA 96-0379.
[23] Kinoshita Y, Kitajima J, Seki Y, et al. Experimental Studies on Methane-Fuel Laboratory Scale Ram Combustor[R]. ASME 94-GT-369.
[24] Ohshima T, Enomoto Y, Nakanishi H, et al. Experimental Approach to the HYPR Mach 5 Ramjet Propulsion System[R]. AIAA 98-3277.
[25] Kishi K, Kuno N, Kashiwagi T, et al. Exhaust Nozzle Research in Japanese HYPR Program[R]. AIAA 95-2606.
[26] Nakamura Y, Oishi T. Development of Mixer-Ejector with Ceramic Acoustic Liner[R]. AIAA 99-1928.
[27] Soga Y, Kurosaki M, Tsuzuki Y, et al. Control of HYPR Demonstrator Engine[R]. AIAA 98-3283.
[28] Nakamura Y, Oishi T. Sub-Scale Engine Noise Test for High Speed Jet Noise Suppression System[R]. AIAA 2000-1958.
[29] Hueter U, McClinton C. NASA's Advanced Space Transportation Hypersonic Program[R]. AIAA 2002-5175.
[30] Cook S A, Morris C E K, Tyson R W. Technology Innovations from NASA's Next Generation Launch Technology Program[C]. Vancouver: 55th International Astronautical Congress, 2004.
[31] Bradley M, Bowcutt K, McComb J, et al. Revolutionary Turbine Accelerator (RTA) Two-Stage-To-Orbit (TSTO) Vehicle Study[R]. AIAA 2002-3902.
[32] Shafer D G, McNelis N B. Development of a Ground Based Mach 4+ Revolutionary Technology Demonstrator (RTATD) for Access to Space[R]. ISABE 2003-1125.
[33] 刘红霞, 梁春华, 孙明霞. 美国高超声速涡轮基组合循环发动机的进展及分析[J]. 航空发动机, 2017, 43(4): 96-102.
[34] Murthy S N B, Curran E T. Developments in High-Speed-Vehicle Propulsion Systems[M]. Virginia: AIAA Press, 1996.
[35] Brazier M E, Paulson R E. Variable Cycle Engine Concept[R]. ISABE 93-7065.
[36] Sippel M, Klevanski J. Preliminary Definition of Supersonic and Hypersonic Airliner Configurations[R]. AIAA 2006-7984.
[37] Sippel M, Okai K. Preliminary Definition of a TBCC Propulsion System for a Mach 4.5 Supersonic Cruise Airliner[R]. ISABE 2007-1204.
[38] Okai K, Sippel M. Component Analysis of TBCC Propulsion for a Mach 4.5 Supersonic Cruise Airliner[C]. Belgium: 2nd European Conference for Aerospace Science, 2007.
[39] 扈鹏飞, 芮长胜. 涡轮冲压组合动力涡轮基技术发展思考[C]. 西安: 中国航天第三专业信息网第三十七届技术交流会暨第一届空天动力联合会议, 2016.
[40] Chen M, Zhu Z, Zhu D, et al. Performance Analysis Tool for Turbine Based Combined Cycle Engine Concept[J]. Journal of Astronautics, 2006, 27(5): 854-859.
[41] 张明阳. 变循环涡扇冲压组合发动机性能仿真建模与分析[D]. 西安: 西北工业大学, 2020.
[42] 徐思远, 朱之丽, 刘振德, 等. 革新涡轮加速模态转换特性研究[J]. 推进技术, 2020, 41(3): 516-526.
[43] Snyder L E, Escher D W. High Mach Turbine Engines for Access to Space Launch Systems[R]. AIAA 2003-5036.
[44] ISO 16290-2013. Space Systems-Definition of the Technology Readiness Levels (TRLs) and Their Criteria of Assessment[S].
[45] Suder K L, Prahst P S, Thorp S A. Results of an Advanced Fan Stage Operating Over a Wide Range of Speed & Bypass Ratio,Part Ⅰ: Fan Stage Design and Experimental Results[R]. ASME GT 2010-22825.
[46] Vyvey P, Bosschaerts W, Villace V F, et al. Study of an Airbreathing Variable Cycle Engine[R]. AIAA 2011-5758.
[47] Alexiou A, Mathioudakis K. Development of Gas Turbine Performance Models Using a Generic Simulation Tool[R]. ASME GT 2005-68678.
[48] Alexiou A, Mathioudakis K. Gas Turbine Engine Performance Model Applications Using an Object-Oriented Simulation Tool[R]. ASME GT 2006-90339.
[49] Alexiou A, Baalbergen E H, Kogenhop O, et al. Advanced Capabilities for Gas Turbine Engine Performance Simulations[R]. ASME GT 2007-27086.
[50] Wood P J, Zenon R L, LaChapelle D G, et al. Turbofan Gas Turbine Engine with Variable Fan Outlet Guide Vanes[P]. USA: 7730714 2, 2010-06-08.
[51] Suder K L. TBCC Fan Stage Operability and Performance[C]. Cleveland: NASA FAP Annual Meeting-Hypersonic Project, 2007.
[52] Hah C. Near Stall Flow Analysis in the Transonic Fan of the RTA Propulsion System[R]. AIAA 2010-277.
[53] Celestina M L, Suder K L, Kulkarni S. Results of an Advanced Fan Stage Over a Wide Operating Range of Speed and Bypass Ratio, Part 2: Comparison of CFD and Experimental Results[R]. ASME GT 2010-23386.
[54] To W M. A CFD Case Study of a Fan Stage with Split Flow Path Subject to Total Pressure Distortion Inflow[R]. NASA/CR-2017-219698.
[55] 李少伟, 王如根, 吴培根. 风车状态静子角度调节对高负荷风扇性能的影响[J]. 空军工程大学学报, 2013, 14(4): 19-24.
[56] Lee J, Winslow R, Buehrle R J. The GE-NASA RTA Hyperburner Design and Development[R]. NASA/TM-2005-213803.
[57] Davoudzadeh F, Buehrle R, Liu N, et al. Numerical Simulation of the RTA Combustion Rig[R]. NASA/TM-2005-213899.
[58] 朱志新, 何小民, 薛 冲, 等. 涡轮基组合循环发动机超级燃烧室燃烧性能试验[J]. 航空动力学报, 2015, 30(9): 2115-2121.
[59] 程晓军. 串联式TBCC超级燃烧室燃烧组织及性能研究[D]. 南京: 南京航空航天大学, 2015.
[60] Lederer R, Schwab R, Voss N. Hypersonic Airbreathing Propulsion Activities for Sanger[R]. AIAA 91-5040.
[61] Rued K, Ebenhoch G, Mark H. Thermal Management of Propulsion Systems in Hypersonic Vehicles[R]. AIAA 92-0516.
[62] Snyder L E, Escher D W, DeFrancesco R L, et al. Turbine Based Combination Cycle (TBCC) Propulsion Subsystem Integration[R]. AIAA 2004-3649.
[63] Gamble E J, Haid D. Thermal Management and Fuel System Model for TBCC Dynamic Simulation[R]. AIAA 2010-6642.
[64] Daniel A H, Eric J G. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model[C]. Arlington: 58th Joint Army-Navy-NASA-Air-Force Propulsion Meeting, 2011.
[65] French M W, Allen G L. NASA VCE Test Bed Engine Aerodynamic Performance Characteristics and Test Results[R]. AIAA 81-1594.
[66] 唐海龙. 面向对象的航空发动机性能仿真系统及其应用[D]. 北京: 北京航空航天大学, 2000.
[67] 周 红. 变循环发动机特性分析及其与飞机一体化设计研究[D]. 西安: 西北工业大学, 2016.
[68] 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017.
[69] Chen M, Tang H, Zhu Z. Goal Programming for Stable Mode Transition in Tandem Turbo-Ramjet Engines[J]. Chinese Journal of Aeronautics, 2009, 22(5): 486-492.
[70] 张明阳, 王占学, 张晓博, 等. 串联式TBCC发动机风车冲压模态性能模拟[J]. 航空动力学报, 2018, 33(12): 2939-2949.
[71] Lytle J K. The Numerical Propulsion System Simulation: An Overview[R]. NASA/TM 2000-209915.
|